Skip to content
Snippets Groups Projects
Commit 4eb8a009 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

[py] porting inception resnet v1

parent c2b538b0
Branches
Tags
1 merge request!88Porting inception resnet v1
Pipeline #45045 failed
# -*- coding: utf-8 -*-
"""Inception-ResNet-V1 models for Keras.
"""
import logging
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import AvgPool2D
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Concatenate
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import GlobalAvgPool2D
from tensorflow.keras.layers import GlobalMaxPool2D
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import MaxPool2D
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from bob.learn.tensorflow.utils import SequentialLayer
logger = logging.getLogger(__name__)
def Conv2D_BN(
filters,
kernel_size,
strides=1,
padding="same",
activation="relu",
use_bias=False,
name=None,
**kwargs,
):
"""Utility class to apply conv + BN.
# Arguments
x: input tensor.
filters:
kernel_size:
strides:
padding:
activation:
use_bias:
Attributes
----------
activation
activation in `Conv2D`.
filters
filters in `Conv2D`.
kernel_size
kernel size as in `Conv2D`.
padding
padding mode in `Conv2D`.
strides
strides in `Conv2D`.
use_bias
whether to use a bias in `Conv2D`.
name
name of the ops; will become `name + '/Act'` for the activation
and `name + '/BatchNorm'` for the batch norm layer.
"""
layers = [
Conv2D(
filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name="Conv2D",
)
]
if not use_bias:
bn_axis = 1 if K.image_data_format() == "channels_first" else 3
layers += [BatchNormalization(axis=bn_axis, scale=False, name="BatchNorm")]
if activation is not None:
layers += [Activation(activation, name="Act")]
return SequentialLayer(layers, name=name, **kwargs)
class ScaledResidual(tf.keras.layers.Layer):
"""A scaled residual connection layer"""
def __init__(self, scale, name="scaled_residual", **kwargs):
super().__init__(name=name, **kwargs)
self.scale = scale
def call(self, inputs, training=None):
return inputs[0] + inputs[1] * self.scale
def get_config(self):
config = super().get_config()
config.update({"scale": self.scale, "name": self.name})
return config
class InceptionResnetBlock(tf.keras.layers.Layer):
"""An Inception-ResNet block.
This class builds 3 types of Inception-ResNet blocks mentioned
in the paper, controlled by the `block_type` argument (which is the
block name used in the official TF-slim implementation):
- Inception-ResNet-A: `block_type='block35'`
- Inception-ResNet-B: `block_type='block17'`
- Inception-ResNet-C: `block_type='block8'`
# Attributes
scale: scaling factor to scale the residuals (i.e., the output of
passing `x` through an inception module) before adding them
to the shortcut branch.
Let `r` be the output from the residual branch,
the output of this block will be `x + scale * r`.
block_type: `'block35'`, `'block17'` or `'block8'`, determines
the network structure in the residual branch.
block_idx: an `int` used for generating layer names.
The Inception-ResNet blocks
are repeated many times in this network.
We use `block_idx` to identify
each of the repetitions. For example,
the first Inception-ResNet-A block
will have `block_type='block35', block_idx=0`,
and the layer names will have
a common prefix `'block35_0'`.
activation: activation function to use at the end of the block
(see [activations](../activations.md)).
When `activation=None`, no activation is applied
(i.e., "linear" activation: `a(x) = x`).
# Raises
ValueError: if `block_type` is not one of `'block35'`,
`'block17'` or `'block8'`.
"""
def __init__(
self,
n_channels,
scale,
block_type,
block_idx,
activation="relu",
n=1,
name=None,
**kwargs,
):
name = name or block_type
super().__init__(name=name, **kwargs)
self.n_channels = n_channels
self.scale = scale
self.block_type = block_type
self.block_idx = block_idx
self.activation = activation
self.n = n
if block_type == "block35":
branch_0 = [Conv2D_BN(32 // n, 1, name="Branch_0/Conv2d_1x1")]
branch_1 = [Conv2D_BN(32 // n, 1, name="Branch_1/Conv2d_0a_1x1")]
branch_1 += [Conv2D_BN(32 // n, 3, name="Branch_1/Conv2d_0b_3x3")]
branch_2 = [Conv2D_BN(32 // n, 1, name="Branch_2/Conv2d_0a_1x1")]
branch_2 += [Conv2D_BN(48 // n, 3, name="Branch_2/Conv2d_0b_3x3")]
branch_2 += [Conv2D_BN(64 // n, 3, name="Branch_2/Conv2d_0c_3x3")]
branches = [branch_0, branch_1, branch_2]
elif block_type == "block17":
branch_0 = [Conv2D_BN(128 // n, 1, name="Branch_0/Conv2d_1x1")]
branch_1 = [Conv2D_BN(128 // n, 1, name="Branch_1/Conv2d_0a_1x1")]
branch_1 += [Conv2D_BN(128 // n, (1, 7), name="Branch_1/Conv2d_0b_1x7")]
branch_1 += [Conv2D_BN(128 // n, (7, 1), name="Branch_1/Conv2d_0c_7x1")]
branches = [branch_0, branch_1]
elif block_type == "block8":
branch_0 = [Conv2D_BN(192 // n, 1, name="Branch_0/Conv2d_1x1")]
branch_1 = [Conv2D_BN(192 // n, 1, name="Branch_1/Conv2d_0a_1x1")]
branch_1 += [Conv2D_BN(224 // n, (1, 3), name="Branch_1/Conv2d_0b_1x3")]
branch_1 += [Conv2D_BN(256 // n, (3, 1), name="Branch_1/Conv2d_0c_3x1")]
branches = [branch_0, branch_1]
else:
raise ValueError(
"Unknown Inception-ResNet block type. "
'Expects "block35", "block17" or "block8", '
"but got: " + str(block_type)
)
self.branches = branches
channel_axis = 1 if K.image_data_format() == "channels_first" else 3
self.concat = Concatenate(axis=channel_axis, name="concatenate")
self.up_conv = Conv2D_BN(
n_channels, 1, activation=None, use_bias=True, name="Conv2d_1x1"
)
self.residual = ScaledResidual(scale)
self.act = lambda x: x
if activation is not None:
self.act = Activation(activation, name="act")
def call(self, inputs, training=None):
branch_outputs = []
for branch in self.branches:
x = inputs
for layer in branch:
x = layer(x, training=training)
branch_outputs.append(x)
mixed = self.concat(branch_outputs)
up = self.up_conv(mixed, training=training)
x = self.residual([inputs, up])
x = self.act(x)
return x
def get_config(self):
config = super().get_config()
config.update(
{
name: getattr(self, name)
for name in [
"n_channels",
"scale",
"block_type",
"block_idx",
"activation",
"n",
"name",
]
}
)
return config
class ReductionA(tf.keras.layers.Layer):
"""A Reduction A block for InceptionResnetV1"""
def __init__(
self,
padding,
k=256,
l=256,
m=384,
n=384,
use_atrous=False,
name="reduction_a",
**kwargs,
):
super().__init__(name=name, **kwargs)
self.padding = padding
self.k = k
self.l = l
self.m = m
self.n = n
self.use_atrous = use_atrous
branch_0 = [
Conv2D_BN(
n,
3,
strides=1 if use_atrous else 2,
padding=padding,
name="Branch_0/Conv2d_1a_3x3",
)
]
branch_1 = [
Conv2D_BN(k, 1, name="Branch_1/Conv2d_0a_1x1"),
Conv2D_BN(l, 3, name="Branch_1/Conv2d_0b_3x3"),
Conv2D_BN(
m,
3,
strides=1 if use_atrous else 2,
padding=padding,
name="Branch_1/Conv2d_1a_3x3",
),
]
branch_pool = [
MaxPool2D(
3,
strides=1 if use_atrous else 2,
padding=padding,
name="Branch_2/MaxPool_1a_3x3",
)
]
self.branches = [branch_0, branch_1, branch_pool]
channel_axis = 1 if K.image_data_format() == "channels_first" else 3
self.concat = Concatenate(axis=channel_axis, name=f"{name}/mixed")
def call(self, inputs, training=None):
branch_outputs = []
for branch in self.branches:
x = inputs
for layer in branch:
try:
x = layer(x, training=training)
except TypeError:
x = layer(x)
branch_outputs.append(x)
return self.concat(branch_outputs)
def get_config(self):
config = super().get_config()
config.update(
{
name: getattr(self, name)
for name in ["padding", "k", "kl", "km", "n", "use_atrous", "name"]
}
)
return config
class ReductionB(tf.keras.layers.Layer):
"""A Reduction B block for InceptionResnetV2"""
def __init__(
self,
padding,
k=256,
kl=256,
km=256,
n=256,
no=384,
p=256,
pq=256,
name="reduction_b",
**kwargs,
):
super().__init__(name=name, **kwargs)
self.padding = padding
self.k = k
self.kl = kl
self.km = km
self.n = n
self.no = no
self.p = p
self.pq = pq
branch_1 = [
Conv2D_BN(n, 1, name="Branch_0/Conv2d_0a_1x1"),
Conv2D_BN(no, 3, strides=2, padding=padding, name="Branch_0/Conv2d_1a_3x3"),
]
branch_2 = [
Conv2D_BN(p, 1, name="Branch_1/Conv2d_0a_1x1"),
Conv2D_BN(pq, 3, strides=2, padding=padding, name="Branch_1/Conv2d_1a_3x3"),
]
branch_3 = [
Conv2D_BN(k, 1, name="Branch_2/Conv2d_0a_1x1"),
Conv2D_BN(kl, 3, name="Branch_2/Conv2d_0b_3x3"),
Conv2D_BN(km, 3, strides=2, padding=padding, name="Branch_2/Conv2d_1a_3x3"),
]
branch_pool = [
MaxPool2D(3, strides=2, padding=padding, name="Branch_3/MaxPool_1a_3x3")
]
self.branches = [branch_1, branch_2, branch_3, branch_pool]
channel_axis = 1 if K.image_data_format() == "channels_first" else 3
self.concat = Concatenate(axis=channel_axis, name=f"{name}/mixed")
def call(self, inputs, training=None):
branch_outputs = []
for branch in self.branches:
x = inputs
for layer in branch:
try:
x = layer(x, training=training)
except TypeError:
x = layer(x)
branch_outputs.append(x)
return self.concat(branch_outputs)
def get_config(self):
config = super().get_config()
config.update(
{
name: getattr(self, name)
for name in ["padding", "k", "kl", "km", "n", "no", "p", "pq", "name"]
}
)
return config
class InceptionA(tf.keras.layers.Layer):
def __init__(self, pool_filters, name="inception_a", **kwargs):
super().__init__(name=name, **kwargs)
self.pool_filters = pool_filters
self.branch1x1 = Conv2D_BN(
96, kernel_size=1, padding="same", name="Branch_0/Conv2d_1x1"
)
self.branch3x3dbl_1 = Conv2D_BN(
64, kernel_size=1, padding="same", name="Branch_2/Conv2d_0a_1x1"
)
self.branch3x3dbl_2 = Conv2D_BN(
96, kernel_size=3, padding="same", name="Branch_2/Conv2d_0b_3x3"
)
self.branch3x3dbl_3 = Conv2D_BN(
96, kernel_size=3, padding="same", name="Branch_2/Conv2d_0c_3x3"
)
self.branch5x5_1 = Conv2D_BN(
48, kernel_size=1, padding="same", name="Branch_1/Conv2d_0a_1x1"
)
self.branch5x5_2 = Conv2D_BN(
64, kernel_size=5, padding="same", name="Branch_1/Conv2d_0b_5x5"
)
self.branch_pool_1 = AvgPool2D(
pool_size=3, strides=1, padding="same", name="Branch_3/AvgPool_0a_3x3"
)
self.branch_pool_2 = Conv2D_BN(
pool_filters, kernel_size=1, padding="same", name="Branch_3/Conv2d_0b_1x1"
)
channel_axis = 1 if K.image_data_format() == "channels_first" else 3
self.concat = Concatenate(axis=channel_axis)
def call(self, inputs, training=None):
branch1x1 = self.branch1x1(inputs)
branch3x3dbl = self.branch3x3dbl_1(inputs)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch5x5 = self.branch5x5_1(inputs)
branch5x5 = self.branch5x5_2(branch5x5)
branch_pool = self.branch_pool_1(inputs)
branch_pool = self.branch_pool_2(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return self.concat(outputs)
def get_config(self):
config = super().get_config()
config.update({"pool_filters": self.pool_filters, "name": self.name})
return config
def InceptionResNetV1(
include_top=True,
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
bottleneck=False,
dropout_rate=0.2,
name="InceptionResnetV2",
**kwargs,
):
"""Instantiates the Inception-ResNet v1 architecture.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
include_top: whether to include the fully-connected
layer at the top of the network.
input_tensor: optional Keras tensor (i.e. output of `tf.keras.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is `False` (otherwise the input shape
has to be `(299, 299, 3)` (with `'channels_last'` data format)
or `(3, 299, 299)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 75.
E.g. `(150, 150, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the last convolutional block.
- `'avg'` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `'max'` means that global max pooling will be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is `True`, and
if no `weights` argument is specified.
# Returns
A Keras `Model` instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if input_tensor is None:
img_input = tf.keras.Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = tf.keras.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
layers = [
# Stem block: 35 x 35 x 192
Conv2D_BN(32, 3, strides=2, padding="valid", name="Conv2d_1a_3x3"),
Conv2D_BN(32, 3, padding="valid", name="Conv2d_2a_3x3"),
Conv2D_BN(64, 3, name="Conv2d_2b_3x3"),
MaxPool2D(3, strides=2, name="MaxPool_3a_3x3"),
Conv2D_BN(80, 1, padding="valid", name="Conv2d_3b_1x1"),
Conv2D_BN(192, 3, padding="valid", name="Conv2d_4a_3x3"),
Conv2D_BN(256, 3, strides=2, padding="valid", name="Conv2d_4b_3x3"),
]
# 5x block35 (Inception-ResNet-A block): 35 x 35 x 320
for block_idx in range(1, 6):
layers.append(
InceptionResnetBlock(
n_channels=256,
scale=0.17,
block_type="block35",
block_idx=block_idx,
name=f"block35_{block_idx}",
)
)
# Mixed 6a (Reduction-A block): 17 x 17 x 1088
layers.append(
ReductionA(
padding="valid",
k=192,
l=192,
m=256,
n=384,
use_atrous=False,
name="Mixed_6a",
)
)
# 10 block17 (Inception-ResNet-B block): 17 x 17 x 1088
for block_idx in range(1, 11):
layers.append(
InceptionResnetBlock(
n_channels=896,
scale=0.1,
block_type="block17",
block_idx=block_idx,
name=f"block17_{block_idx}",
)
)
# Mixed 7a (Reduction-B block): 8 x 8 x 2080
layers.append(
ReductionB(
padding="valid",
k=256,
kl=256,
km=256,
n=256,
no=384,
p=256,
pq=256,
name="Mixed_7a",
)
)
# 5x block8 (Inception-ResNet-C block): 8 x 8 x 2080
for block_idx in range(1, 5):
layers.append(
InceptionResnetBlock(
n_channels=1792,
scale=0.2,
block_type="block8",
block_idx=block_idx,
name=f"block8_{block_idx}",
)
)
layers.append(
InceptionResnetBlock(
n_channels=1792,
scale=1.0,
activation=None,
block_type="block8",
block_idx=10,
name=f"Mixed_8b",
)
)
if (include_top and pooling is None) or (bottleneck):
pooling = "avg"
if pooling == "avg":
layers.append(GlobalAvgPool2D())
elif pooling == "max":
layers.append(GlobalMaxPool2D())
if bottleneck:
layers.append(Dropout(dropout_rate, name="Dropout"))
layers.append(Dense(128, use_bias=False, name="Bottleneck"))
layers.append(
BatchNormalization(axis=-1, scale=False, name="Bottleneck/BatchNorm")
)
# Classification block
if include_top:
layers.append(Dense(classes, name="logits"))
# Create model and call it on input to create its variables.
model = Sequential(layers, name=name, **kwargs)
model(img_input)
return model
if __name__ == "__main__":
import pkg_resources
from bob.learn.tensorflow.utils import model_summary
from tabulate import tabulate
def print_model(inputs, outputs, name=None):
print("")
print("===============")
print(name)
print("===============")
model = tf.keras.Model(inputs, outputs)
rows = model_summary(model, do_print=True)
del rows[-2]
print(tabulate(rows, headers="firstrow", tablefmt="latex"))
model = InceptionResNetV1(input_shape=(160, 160, 3), bottleneck=True, include_top=False)
inputs = tf.keras.Input((160, 160, 3))
outputs = model.call(inputs)
model.summary()
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment