Skip to content
Snippets Groups Projects
Commit 3287c426 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

New networks

parent be94b635
No related branches found
No related tags found
1 merge request!13Updates
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of the Inception Resnet V2 architecture.
As described in http://arxiv.org/abs/1602.07261.
Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow.contrib.slim as slim
# Inception-Renset-A
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# Inception-Renset-B
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 17x17 resnet block."""
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
scope='Conv2d_0b_1x7')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
scope='Conv2d_0c_7x1')
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# Inception-Resnet-C
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 8x8 resnet block."""
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
scope='Conv2d_0b_1x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
scope='Conv2d_0c_3x1')
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v2(images, is_training=phase_train,
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
def inception_resnet_v2(inputs, is_training=True,
dropout_keep_prob=0.8,
bottleneck_layer_size=128,
reuse=None,
scope='InceptionResnetV2'):
"""Creates the Inception Resnet V2 model.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: float, the fraction to keep before final layer.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
end_points['Conv2d_1a_3x3'] = net
# 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',
scope='Conv2d_2a_3x3')
end_points['Conv2d_2a_3x3'] = net
# 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
end_points['Conv2d_2b_3x3'] = net
# 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_3a_3x3')
end_points['MaxPool_3a_3x3'] = net
# 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',
scope='Conv2d_3b_1x1')
end_points['Conv2d_3b_1x1'] = net
# 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',
scope='Conv2d_4a_3x3')
end_points['Conv2d_4a_3x3'] = net
# 35 x 35 x 192
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_5a_3x3')
end_points['MaxPool_5a_3x3'] = net
# 35 x 35 x 320
with tf.variable_scope('Mixed_5b'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
scope='Conv2d_0b_5x5')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
scope='AvgPool_0a_3x3')
tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
scope='Conv2d_0b_1x1')
net = tf.concat([tower_conv, tower_conv1_1,
tower_conv2_2, tower_pool_1], 3)
end_points['Mixed_5b'] = net
net = slim.repeat(net, 10, block35, scale=0.17)
# 17 x 17 x 1024
with tf.variable_scope('Mixed_6a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
scope='Conv2d_0b_3x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
end_points['Mixed_6a'] = net
net = slim.repeat(net, 20, block17, scale=0.10)
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([tower_conv_1, tower_conv1_1,
tower_conv2_2, tower_pool], 3)
end_points['Mixed_7a'] = net
net = slim.repeat(net, 9, block8, scale=0.20)
net = block8(net, activation_fn=None)
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
end_points['Conv2d_7b_1x1'] = net
with tf.variable_scope('Logits'):
end_points['PrePool'] = net
#pylint: disable=no-member
net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
scope='AvgPool_1a_8x8')
net = slim.flatten(net)
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='Dropout')
end_points['PreLogitsFlatten'] = net
net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,
scope='Bottleneck', reuse=False)
return net, end_points
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Tiago de Freitas Pereira <tiago.pereira@idiap.ch>
# @date: Wed 11 May 2016 09:39:36 CEST
import tensorflow as tf
from bob.learn.tensorflow.layers import maxout
class LightCNN29(object):
"""Creates the graph for the Light CNN-9 in
Wu, Xiang, et al. "A light CNN for deep face representation with noisy labels." arXiv preprint arXiv:1511.02683 (2015).
"""
def __init__(self,
seed=10,
n_classes=10,
device="/cpu:0",
batch_norm=False):
self.seed = seed
self.device = device
self.batch_norm = batch_norm
self.n_classes = n_classes
def __call__(self, inputs, reuse=False):
slim = tf.contrib.slim
#with tf.device(self.device):
initializer = tf.contrib.layers.xavier_initializer(uniform=False, dtype=tf.float32, seed=self.seed)
graph = slim.conv2d(inputs, 96, [5, 5], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv1',
reuse=reuse)
graph = maxout(graph,
num_units=48,
name='Maxout1')
graph = slim.max_pool2d(graph, [2, 2], stride=2, padding="SAME", scope='Pool1')
####
graph = slim.conv2d(graph, 96, [1, 1], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv2a',
reuse=reuse)
graph = maxout(graph,
num_units=48,
name='Maxout2a')
graph = slim.conv2d(graph, 192, [3, 3], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv2',
reuse=reuse)
graph = maxout(graph,
num_units=96,
name='Maxout2')
graph = slim.max_pool2d(graph, [2, 2], stride=2, padding="SAME", scope='Pool2')
#####
graph = slim.conv2d(graph, 192, [1, 1], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv3a',
reuse=reuse)
graph = maxout(graph,
num_units=96,
name='Maxout3a')
graph = slim.conv2d(graph, 384, [3, 3], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv3',
reuse=reuse)
graph = maxout(graph,
num_units=192,
name='Maxout3')
graph = slim.max_pool2d(graph, [2, 2], stride=2, padding="SAME", scope='Pool3')
#####
graph = slim.conv2d(graph, 384, [1, 1], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv4a',
reuse=reuse)
graph = maxout(graph,
num_units=192,
name='Maxout4a')
graph = slim.conv2d(graph, 256, [3, 3], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv4',
reuse=reuse)
graph = maxout(graph,
num_units=128,
name='Maxout4')
#####
graph = slim.conv2d(graph, 256, [1, 1], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv5a',
reuse=reuse)
graph = maxout(graph,
num_units=128,
name='Maxout5a')
graph = slim.conv2d(graph, 256, [3, 3], activation_fn=tf.nn.relu,
stride=1,
weights_initializer=initializer,
scope='Conv5',
reuse=reuse)
graph = maxout(graph,
num_units=128,
name='Maxout5')
graph = slim.max_pool2d(graph, [2, 2], stride=2, padding="SAME", scope='Pool4')
graph = slim.flatten(graph, scope='flatten1')
#graph = slim.dropout(graph, keep_prob=0.3, scope='dropout1')
graph = slim.fully_connected(graph, 512,
weights_initializer=initializer,
activation_fn=tf.nn.relu,
scope='fc1',
reuse=reuse)
graph = maxout(graph,
num_units=256,
name='Maxoutfc1')
graph = slim.dropout(graph, keep_prob=0.3, scope='dropout1')
graph = slim.fully_connected(graph, self.n_classes,
weights_initializer=initializer,
activation_fn=None,
scope='fc2',
reuse=reuse)
return graph
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment