Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This project is archived. Its data is
read-only
.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
2ca17f5f
Commit
2ca17f5f
authored
May 2, 2019
by
Tiago de Freitas Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Fixed the reuse in some operations of the inception-v1
parent
30dd85ea
No related branches found
No related tags found
1 merge request
!77
Fixed the reuse in some operations of the inception-v1
Pipeline
#29815
passed
May 3, 2019
Stage: build
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/learn/tensorflow/network/InceptionResnetV1.py
+44
-12
44 additions, 12 deletions
bob/learn/tensorflow/network/InceptionResnetV1.py
with
44 additions
and
12 deletions
bob/learn/tensorflow/network/InceptionResnetV1.py
+
44
−
12
View file @
2ca17f5f
...
...
@@ -32,24 +32,29 @@ def block35(net,
scale
=
1.0
,
activation_fn
=
tf
.
nn
.
relu
,
scope
=
None
,
reuse
=
None
,
trainable_variables
=
True
):
"""
Builds the 35x35 resnet block.
"""
with
tf
.
variable_scope
(
scope
,
'
Block35
'
,
[
net
]):
with
tf
.
variable_scope
(
'
Branch_0
'
):
tower_conv
=
slim
.
conv2d
(
net
,
32
,
1
,
scope
=
'
Conv2d_1x1
'
,
trainable
=
trainable_variables
)
net
,
32
,
1
,
scope
=
'
Conv2d_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_1
'
):
tower_conv1_0
=
slim
.
conv2d
(
net
,
32
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_1
=
slim
.
conv2d
(
tower_conv1_0
,
32
,
3
,
scope
=
'
Conv2d_0b_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_2
'
):
tower_conv2_0
=
slim
.
conv2d
(
...
...
@@ -57,18 +62,21 @@ def block35(net,
32
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv2_1
=
slim
.
conv2d
(
tower_conv2_0
,
32
,
3
,
scope
=
'
Conv2d_0b_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv2_2
=
slim
.
conv2d
(
tower_conv2_1
,
32
,
3
,
scope
=
'
Conv2d_0c_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
mixed
=
tf
.
concat
([
tower_conv
,
tower_conv1_1
,
tower_conv2_2
],
3
)
up
=
slim
.
conv2d
(
...
...
@@ -78,6 +86,7 @@ def block35(net,
normalizer_fn
=
None
,
activation_fn
=
None
,
scope
=
'
Conv2d_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
net
+=
scale
*
up
if
activation_fn
:
...
...
@@ -90,28 +99,32 @@ def block17(net,
scale
=
1.0
,
activation_fn
=
tf
.
nn
.
relu
,
scope
=
None
,
reuse
=
None
,
trainable_variables
=
True
):
"""
Builds the 17x17 resnet block.
"""
with
tf
.
variable_scope
(
scope
,
'
Block17
'
,
[
net
]):
with
tf
.
variable_scope
(
'
Branch_0
'
):
tower_conv
=
slim
.
conv2d
(
net
,
128
,
1
,
scope
=
'
Conv2d_1x1
'
,
trainable
=
trainable_variables
)
net
,
128
,
1
,
scope
=
'
Conv2d_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
with
tf
.
variable_scope
(
'
Branch_1
'
):
tower_conv1_0
=
slim
.
conv2d
(
net
,
128
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_1
=
slim
.
conv2d
(
tower_conv1_0
,
128
,
[
1
,
7
],
scope
=
'
Conv2d_0b_1x7
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_2
=
slim
.
conv2d
(
tower_conv1_1
,
128
,
[
7
,
1
],
scope
=
'
Conv2d_0c_7x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
mixed
=
tf
.
concat
([
tower_conv
,
tower_conv1_2
],
3
)
up
=
slim
.
conv2d
(
...
...
@@ -121,6 +134,7 @@ def block17(net,
normalizer_fn
=
None
,
activation_fn
=
None
,
scope
=
'
Conv2d_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
net
+=
scale
*
up
if
activation_fn
:
...
...
@@ -133,28 +147,32 @@ def block8(net,
scale
=
1.0
,
activation_fn
=
tf
.
nn
.
relu
,
scope
=
None
,
reuse
=
None
,
trainable_variables
=
True
):
"""
Builds the 8x8 resnet block.
"""
with
tf
.
variable_scope
(
scope
,
'
Block8
'
,
[
net
]):
with
tf
.
variable_scope
(
'
Branch_0
'
):
tower_conv
=
slim
.
conv2d
(
net
,
192
,
1
,
scope
=
'
Conv2d_1x1
'
,
trainable
=
trainable_variables
)
net
,
192
,
1
,
scope
=
'
Conv2d_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
with
tf
.
variable_scope
(
'
Branch_1
'
):
tower_conv1_0
=
slim
.
conv2d
(
net
,
192
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_1
=
slim
.
conv2d
(
tower_conv1_0
,
192
,
[
1
,
3
],
scope
=
'
Conv2d_0b_1x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_2
=
slim
.
conv2d
(
tower_conv1_1
,
192
,
[
3
,
1
],
scope
=
'
Conv2d_0c_3x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
mixed
=
tf
.
concat
([
tower_conv
,
tower_conv1_2
],
3
)
up
=
slim
.
conv2d
(
...
...
@@ -164,6 +182,7 @@ def block8(net,
normalizer_fn
=
None
,
activation_fn
=
None
,
scope
=
'
Conv2d_1x1
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
net
+=
scale
*
up
if
activation_fn
:
...
...
@@ -171,7 +190,7 @@ def block8(net,
return
net
def
reduction_a
(
net
,
k
,
l
,
m
,
n
,
trainable_variables
=
True
):
def
reduction_a
(
net
,
k
,
l
,
m
,
n
,
trainable_variables
=
True
,
reuse
=
None
):
with
tf
.
variable_scope
(
'
Branch_0
'
):
tower_conv
=
slim
.
conv2d
(
net
,
...
...
@@ -180,15 +199,17 @@ def reduction_a(net, k, l, m, n, trainable_variables=True):
stride
=
2
,
padding
=
'
VALID
'
,
scope
=
'
Conv2d_1a_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_1
'
):
tower_conv1_0
=
slim
.
conv2d
(
net
,
k
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
)
net
,
k
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
tower_conv1_1
=
slim
.
conv2d
(
tower_conv1_0
,
l
,
3
,
scope
=
'
Conv2d_0b_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv1_2
=
slim
.
conv2d
(
tower_conv1_1
,
...
...
@@ -196,6 +217,7 @@ def reduction_a(net, k, l, m, n, trainable_variables=True):
3
,
stride
=
2
,
padding
=
'
VALID
'
,
reuse
=
reuse
,
scope
=
'
Conv2d_1a_3x3
'
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_2
'
):
...
...
@@ -205,21 +227,22 @@ def reduction_a(net, k, l, m, n, trainable_variables=True):
return
net
def
reduction_b
(
net
,
trainable_variables
=
True
):
def
reduction_b
(
net
,
trainable_variables
=
True
,
reuse
=
None
):
with
tf
.
variable_scope
(
'
Branch_0
'
):
tower_conv
=
slim
.
conv2d
(
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
)
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
tower_conv_1
=
slim
.
conv2d
(
tower_conv
,
384
,
3
,
stride
=
2
,
padding
=
'
VALID
'
,
reuse
=
reuse
,
scope
=
'
Conv2d_1a_3x3
'
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_1
'
):
tower_conv1
=
slim
.
conv2d
(
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
)
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
tower_conv1_1
=
slim
.
conv2d
(
tower_conv1
,
256
,
...
...
@@ -227,15 +250,17 @@ def reduction_b(net, trainable_variables=True):
stride
=
2
,
padding
=
'
VALID
'
,
scope
=
'
Conv2d_1a_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_2
'
):
tower_conv2
=
slim
.
conv2d
(
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
)
net
,
256
,
1
,
scope
=
'
Conv2d_0a_1x1
'
,
trainable
=
trainable_variables
,
reuse
=
reuse
)
tower_conv2_1
=
slim
.
conv2d
(
tower_conv2
,
256
,
3
,
scope
=
'
Conv2d_0b_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
tower_conv2_2
=
slim
.
conv2d
(
tower_conv2_1
,
...
...
@@ -244,6 +269,7 @@ def reduction_b(net, trainable_variables=True):
stride
=
2
,
padding
=
'
VALID
'
,
scope
=
'
Conv2d_1a_3x3
'
,
reuse
=
reuse
,
trainable
=
trainable_variables
)
with
tf
.
variable_scope
(
'
Branch_3
'
):
tower_pool
=
slim
.
max_pool2d
(
...
...
@@ -400,6 +426,7 @@ def inception_resnet_v1(inputs,
3
,
stride
=
2
,
padding
=
'
VALID
'
,
reuse
=
reuse
,
scope
=
name
,
trainable
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -419,6 +446,7 @@ def inception_resnet_v1(inputs,
3
,
padding
=
'
VALID
'
,
scope
=
name
,
reuse
=
reuse
,
trainable
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -433,7 +461,7 @@ def inception_resnet_v1(inputs,
name
=
"
Conv2d_2b_3x3
"
trainable
=
is_trainable
(
name
,
trainable_variables
,
mode
=
mode
)
net
=
slim
.
conv2d
(
net
,
64
,
3
,
scope
=
name
,
trainable
=
trainable
)
net
,
64
,
3
,
scope
=
name
,
trainable
=
trainable
,
reuse
=
reuse
)
end_points
[
name
]
=
net
# 73 x 73 x 64
...
...
@@ -457,6 +485,7 @@ def inception_resnet_v1(inputs,
1
,
padding
=
'
VALID
'
,
scope
=
name
,
reuse
=
reuse
,
trainable
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -476,6 +505,7 @@ def inception_resnet_v1(inputs,
3
,
padding
=
'
VALID
'
,
scope
=
name
,
reuse
=
reuse
,
trainable
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -496,6 +526,7 @@ def inception_resnet_v1(inputs,
stride
=
2
,
padding
=
'
VALID
'
,
scope
=
name
,
reuse
=
reuse
,
trainable
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -514,6 +545,7 @@ def inception_resnet_v1(inputs,
5
,
block35
,
scale
=
0.17
,
reuse
=
reuse
,
trainable_variables
=
trainable
)
end_points
[
name
]
=
net
...
...
@@ -568,7 +600,7 @@ def inception_resnet_v1(inputs,
with
tf
.
variable_scope
(
name
):
net
=
reduction_b
(
net
,
trainable_variables
=
trainable
)
net
,
trainable_variables
=
trainable
,
reuse
=
reuse
)
end_points
[
name
]
=
net
# 5 x Inception-Resnet-C
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment