Skip to content
Snippets Groups Projects
Commit c8ca46ef authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[datasets] added a wrapper to FaceCropAlign preprocessor from bob.pad.face

parent 508a93e1
No related branches found
No related tags found
1 merge request!10Add fargo dataset
from .casia_webface import CasiaDataset
from .casia_webface import CasiaWebFaceDataset
from .fargo import FargoDataset
from .data_folder import DataFolder
# transforms
from .utils import FaceCropper
from .utils import FaceCropAlign
from .utils import RollChannels
from .utils import ToTensor
from .utils import Normalize
......
......@@ -9,22 +9,77 @@ class FaceCropper():
"""
Class to crop a face, based on eyes position
"""
def __init__(self, cropped_height, cropped_width):
def __init__(self, cropped_height, cropped_width, color_channel='rgb'):
# the face cropper
from bob.bio.face.preprocessor import FaceCrop
cropped_image_size = (cropped_height, cropped_width)
right_eye_pos = (cropped_height // 5, cropped_width // 4 -1)
left_eye_pos = (cropped_height // 5, cropped_width // 4 * 3)
cropped_positions = {'leye': left_eye_pos, 'reye': right_eye_pos}
self.color_channel = color_channel
self.face_cropper = FaceCrop(cropped_image_size=cropped_image_size,
cropped_positions=cropped_positions,
color_channel='rgb',
color_channel=color_channel,
dtype='uint8'
)
def __call__(self, sample):
cropped = self.face_cropper(sample['image'], sample['eyes'])
sample['image'] = cropped
if self.color_channel == 'gray':
sample['image'] = sample['image'][..., numpy.newaxis]
return sample
class FaceCropAlign():
"""
Wrapper to the FaceCropAlign of bob.pad.face preprocessor
"""
def __init__(self, face_size, rgb_output_flag=False,
use_face_alignment=True,
alignment_type='lightcnn',
face_detection_method='mtcnn',
):
""" Init function
Parameters
----------
face_size: :obj:`int`
The size of the cropped face (square)
rgb_output_flag: :py:class:`bool`
Return RGB cropped face if True, grayscale otherwise
use_face_alignment: :py:class:`bool`
If set to True, the face will be aligned, using the facial landmarks detected locally
Works only when ``face_detection_method is not None``.
alignment_type: :py:class:`str`
Specifies the alignment type to use if ``use_face_alignment`` is set to ``True``.
Two methods are currently implemented:
``default`` which would do alignment by making eyes horizontally
``lightcnn`` which aligns the face such that eye center and mouth centers are aligned to
predefined positions. This option overrides the face size option as the output required
is always 128x128. This is suitable for use with LightCNN model.
face_detection_method: :py:class:`str`
A package to be used for face detection and landmark detection.
Options supported by this class: "dlib" and "mtcnn"
"""
from bob.pad.face.preprocessor import FaceCropAlign
self.face_cropper = FaceCropAlign(face_size,
rgb_output_flag,
use_face_alignment,
alignment_type=alignment_type,
face_detection_method=face_detection_method,
)
def __call__(self, sample):
cropped = self.face_cropper(sample['image'])
if cropped is None:
print("Face not detected ...")
cropped = numpy.zeros((128, 128))
sample['image'] = cropped[..., numpy.newaxis]
return sample
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment