Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.learn.em
Commits
814ab98d
Commit
814ab98d
authored
May 08, 2015
by
Manuel Günther
Browse files
Merge branch 'master' of
https://github.com/bioidiap/bob.learn.em
parents
28aba742
e98f7784
Changes
2
Hide whitespace changes
Inline
Side-by-side
bob/learn/em/test/test_em.py
View file @
814ab98d
...
...
@@ -18,6 +18,9 @@ from bob.learn.em import KMeansMachine, GMMMachine, KMeansTrainer, \
import
bob.learn.em
import
bob.core
bob
.
core
.
log
.
setup
(
"bob.learn.em"
)
#, MAP_GMMTrainer
def
loadGMM
():
...
...
bob/learn/em/train.py
View file @
814ab98d
...
...
@@ -6,8 +6,11 @@
# Copyright (C) 2011-2015 Idiap Research Institute, Martigny, Switzerland
import
numpy
import
bob.learn.em
import
logging
logger
=
logging
.
getLogger
(
'bob.learn.em'
)
def
train
(
trainer
,
machine
,
data
,
max_iterations
=
50
,
convergence_threshold
=
None
,
initialize
=
True
,
rng
=
None
):
"""
Trains a machine given a trainer and the proper data
...
...
@@ -38,21 +41,24 @@ def train(trainer, machine, data, max_iterations = 50, convergence_threshold=Non
average_output
=
0
average_output_previous
=
0
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"compute_likelihood"
):
if
hasattr
(
trainer
,
"compute_likelihood"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
average_output_previous
=
average_output
trainer
.
m_step
(
machine
,
data
)
trainer
.
e_step
(
machine
,
data
)
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"compute_likelihood"
):
if
hasattr
(
trainer
,
"compute_likelihood"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
#Terminates if converged (and likelihood computation is set)
if
convergence_threshold
!=
None
and
abs
((
average_output_previous
-
average_output
)
/
average_output_previous
)
<=
convergence_threshold
:
break
logger
.
info
(
"log likelihood = %f"
,
average_output
)
convergence_value
=
abs
((
average_output_previous
-
average_output
)
/
average_output_previous
)
logger
.
info
(
"convergence value = %f"
,
convergence_value
)
#Terminates if converged (and likelihood computation is set)
if
convergence_threshold
!=
None
and
convergence_value
<=
convergence_threshold
:
break
if
hasattr
(
trainer
,
"finalize"
):
trainer
.
finalize
(
machine
,
data
)
...
...
@@ -83,19 +89,25 @@ def train_jfa(trainer, jfa_base, data, max_iterations=10, initialize=True, rng=N
trainer
.
initialize
(
jfa_base
,
data
)
#V Subspace
logger
.
info
(
"V subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_v
(
jfa_base
,
data
)
trainer
.
m_step_v
(
jfa_base
,
data
)
trainer
.
finalize_v
(
jfa_base
,
data
)
#U subspace
logger
.
info
(
"U subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_u
(
jfa_base
,
data
)
trainer
.
m_step_u
(
jfa_base
,
data
)
trainer
.
finalize_u
(
jfa_base
,
data
)
# d subspace
# D subspace
logger
.
info
(
"D subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_d
(
jfa_base
,
data
)
trainer
.
m_step_d
(
jfa_base
,
data
)
trainer
.
finalize_d
(
jfa_base
,
data
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment