Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Commits
814ab98d
Commit
814ab98d
authored
9 years ago
by
Manuel Günther
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of
https://github.com/bioidiap/bob.learn.em
parents
28aba742
e98f7784
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/em/test/test_em.py
+3
-0
3 additions, 0 deletions
bob/learn/em/test/test_em.py
bob/learn/em/train.py
+21
-9
21 additions, 9 deletions
bob/learn/em/train.py
with
24 additions
and
9 deletions
bob/learn/em/test/test_em.py
+
3
−
0
View file @
814ab98d
...
@@ -18,6 +18,9 @@ from bob.learn.em import KMeansMachine, GMMMachine, KMeansTrainer, \
...
@@ -18,6 +18,9 @@ from bob.learn.em import KMeansMachine, GMMMachine, KMeansTrainer, \
import
bob.learn.em
import
bob.learn.em
import
bob.core
bob
.
core
.
log
.
setup
(
"
bob.learn.em
"
)
#, MAP_GMMTrainer
#, MAP_GMMTrainer
def
loadGMM
():
def
loadGMM
():
...
...
This diff is collapsed.
Click to expand it.
bob/learn/em/train.py
+
21
−
9
View file @
814ab98d
...
@@ -6,8 +6,11 @@
...
@@ -6,8 +6,11 @@
# Copyright (C) 2011-2015 Idiap Research Institute, Martigny, Switzerland
# Copyright (C) 2011-2015 Idiap Research Institute, Martigny, Switzerland
import
numpy
import
numpy
import
bob.learn.em
import
bob.learn.em
import
logging
logger
=
logging
.
getLogger
(
'
bob.learn.em
'
)
def
train
(
trainer
,
machine
,
data
,
max_iterations
=
50
,
convergence_threshold
=
None
,
initialize
=
True
,
rng
=
None
):
def
train
(
trainer
,
machine
,
data
,
max_iterations
=
50
,
convergence_threshold
=
None
,
initialize
=
True
,
rng
=
None
):
"""
"""
Trains a machine given a trainer and the proper data
Trains a machine given a trainer and the proper data
...
@@ -38,21 +41,24 @@ def train(trainer, machine, data, max_iterations = 50, convergence_threshold=Non
...
@@ -38,21 +41,24 @@ def train(trainer, machine, data, max_iterations = 50, convergence_threshold=Non
average_output
=
0
average_output
=
0
average_output_previous
=
0
average_output_previous
=
0
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"
compute_likelihood
"
):
if
hasattr
(
trainer
,
"
compute_likelihood
"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
average_output
=
trainer
.
compute_likelihood
(
machine
)
for
i
in
range
(
max_iterations
):
for
i
in
range
(
max_iterations
):
logger
.
info
(
"
Iteration = %d/%d
"
,
i
,
max_iterations
)
average_output_previous
=
average_output
average_output_previous
=
average_output
trainer
.
m_step
(
machine
,
data
)
trainer
.
m_step
(
machine
,
data
)
trainer
.
e_step
(
machine
,
data
)
trainer
.
e_step
(
machine
,
data
)
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"
compute_likelihood
"
):
if
hasattr
(
trainer
,
"
compute_likelihood
"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
average_output
=
trainer
.
compute_likelihood
(
machine
)
logger
.
info
(
"
log likelihood = %f
"
,
average_output
)
#Terminates if converged (and likelihood computation is set)
convergence_value
=
abs
((
average_output_previous
-
average_output
)
/
average_output_previous
)
if
convergence_threshold
!=
None
and
abs
((
average_output_previous
-
average_output
)
/
average_output_previous
)
<=
convergence_threshold
:
logger
.
info
(
"
convergence value = %f
"
,
convergence_value
)
break
#Terminates if converged (and likelihood computation is set)
if
convergence_threshold
!=
None
and
convergence_value
<=
convergence_threshold
:
break
if
hasattr
(
trainer
,
"
finalize
"
):
if
hasattr
(
trainer
,
"
finalize
"
):
trainer
.
finalize
(
machine
,
data
)
trainer
.
finalize
(
machine
,
data
)
...
@@ -83,19 +89,25 @@ def train_jfa(trainer, jfa_base, data, max_iterations=10, initialize=True, rng=N
...
@@ -83,19 +89,25 @@ def train_jfa(trainer, jfa_base, data, max_iterations=10, initialize=True, rng=N
trainer
.
initialize
(
jfa_base
,
data
)
trainer
.
initialize
(
jfa_base
,
data
)
#V Subspace
#V Subspace
logger
.
info
(
"
V subspace estimation...
"
)
for
i
in
range
(
max_iterations
):
for
i
in
range
(
max_iterations
):
logger
.
info
(
"
Iteration = %d/%d
"
,
i
,
max_iterations
)
trainer
.
e_step_v
(
jfa_base
,
data
)
trainer
.
e_step_v
(
jfa_base
,
data
)
trainer
.
m_step_v
(
jfa_base
,
data
)
trainer
.
m_step_v
(
jfa_base
,
data
)
trainer
.
finalize_v
(
jfa_base
,
data
)
trainer
.
finalize_v
(
jfa_base
,
data
)
#U subspace
#U subspace
logger
.
info
(
"
U subspace estimation...
"
)
for
i
in
range
(
max_iterations
):
for
i
in
range
(
max_iterations
):
logger
.
info
(
"
Iteration = %d/%d
"
,
i
,
max_iterations
)
trainer
.
e_step_u
(
jfa_base
,
data
)
trainer
.
e_step_u
(
jfa_base
,
data
)
trainer
.
m_step_u
(
jfa_base
,
data
)
trainer
.
m_step_u
(
jfa_base
,
data
)
trainer
.
finalize_u
(
jfa_base
,
data
)
trainer
.
finalize_u
(
jfa_base
,
data
)
# d subspace
# D subspace
logger
.
info
(
"
D subspace estimation...
"
)
for
i
in
range
(
max_iterations
):
for
i
in
range
(
max_iterations
):
logger
.
info
(
"
Iteration = %d/%d
"
,
i
,
max_iterations
)
trainer
.
e_step_d
(
jfa_base
,
data
)
trainer
.
e_step_d
(
jfa_base
,
data
)
trainer
.
m_step_d
(
jfa_base
,
data
)
trainer
.
m_step_d
(
jfa_base
,
data
)
trainer
.
finalize_d
(
jfa_base
,
data
)
trainer
.
finalize_d
(
jfa_base
,
data
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment