Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.learn.em
Commits
e98f7784
Commit
e98f7784
authored
May 07, 2015
by
Elie KHOURY
Browse files
improving the logging info... and correcting division per zero error
parent
af6fd843
Changes
1
Hide whitespace changes
Inline
Side-by-side
bob/learn/em/train.py
View file @
e98f7784
...
...
@@ -10,6 +10,7 @@ import logging
logger
=
logging
.
getLogger
(
'bob.learn.em'
)
def
train
(
trainer
,
machine
,
data
,
max_iterations
=
50
,
convergence_threshold
=
None
,
initialize
=
True
,
rng
=
None
):
"""
Trains a machine given a trainer and the proper data
...
...
@@ -40,26 +41,24 @@ def train(trainer, machine, data, max_iterations = 50, convergence_threshold=Non
average_output
=
0
average_output_previous
=
0
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"compute_likelihood"
):
if
hasattr
(
trainer
,
"compute_likelihood"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
average_output_previous
=
average_output
trainer
.
m_step
(
machine
,
data
)
trainer
.
e_step
(
machine
,
data
)
if
convergence_threshold
!=
None
and
hasattr
(
trainer
,
"compute_likelihood"
):
if
hasattr
(
trainer
,
"compute_likelihood"
):
average_output
=
trainer
.
compute_likelihood
(
machine
)
else
:
logger
.
info
(
"Iteration = %d "
,
i
)
#Terminates if converged (and likelihood computation is set)
if
convergence_threshold
!=
None
:
logger
.
info
(
"log likelihood = %f"
,
average_output
)
convergence_value
=
abs
((
average_output_previous
-
average_output
)
/
average_output_previous
)
logger
.
info
(
"Iteration = %d
\t
convergence value = %f "
,
i
,
convergence_value
)
if
convergence_value
<=
convergence_threshold
:
logger
.
info
(
"convergence value = %f"
,
convergence_value
)
#Terminates if converged (and likelihood computation is set)
if
convergence_threshold
!=
None
and
convergence_value
<=
convergence_threshold
:
break
if
hasattr
(
trainer
,
"finalize"
):
trainer
.
finalize
(
machine
,
data
)
...
...
@@ -90,19 +89,25 @@ def train_jfa(trainer, jfa_base, data, max_iterations=10, initialize=True, rng=N
trainer
.
initialize
(
jfa_base
,
data
)
#V Subspace
logger
.
info
(
"V subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_v
(
jfa_base
,
data
)
trainer
.
m_step_v
(
jfa_base
,
data
)
trainer
.
finalize_v
(
jfa_base
,
data
)
#U subspace
logger
.
info
(
"U subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_u
(
jfa_base
,
data
)
trainer
.
m_step_u
(
jfa_base
,
data
)
trainer
.
finalize_u
(
jfa_base
,
data
)
# d subspace
# D subspace
logger
.
info
(
"D subspace estimation..."
)
for
i
in
range
(
max_iterations
):
logger
.
info
(
"Iteration = %d/%d"
,
i
,
max_iterations
)
trainer
.
e_step_d
(
jfa_base
,
data
)
trainer
.
m_step_d
(
jfa_base
,
data
)
trainer
.
finalize_d
(
jfa_base
,
data
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment