Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Commits
69f2bb59
Commit
69f2bb59
authored
3 years ago
by
Yannick DAYER
Browse files
Options
Downloads
Patches
Plain Diff
[doc] skip doctests of removed C++ modules
parent
c431c24a
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!43
Remove C++ code, tests, dependencies, and build scripts
,
!40
Transition to a pure python implementation
Pipeline
#56573
failed
3 years ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/guide.rst
+14
-9
14 additions, 9 deletions
doc/guide.rst
with
14 additions
and
9 deletions
doc/guide.rst
+
14
−
9
View file @
69f2bb59
...
...
@@ -100,7 +100,7 @@ This statistical model is defined in the class
:py:class:`bob.learn.em.GMMMachine` as bellow.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> # Create a GMM with k=2 Gaussians with the dimensionality of 3
...
...
@@ -132,7 +132,7 @@ estimator.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -197,7 +197,7 @@ Follow bellow an snippet on how to train a GMM using the MAP estimator.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -275,7 +275,7 @@ prior GMM.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -340,7 +340,7 @@ Intersession variability modeling.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -414,7 +414,7 @@ The JFA statistical model is stored in this container
Intersession variability modeling.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -489,7 +489,7 @@ The iVector statistical model is stored in this container
a Total variability modeling.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -564,7 +564,7 @@ This scoring technique is implemented in :py:func:`bob.learn.em.linear_scoring`.
The snippet bellow shows how to compute scores using this approximation.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> import bob.learn.em
>>> import numpy
...
...
@@ -611,7 +611,7 @@ Let us consider a training set of two classes, each with 3 samples of
dimensionality 3.
.. doctest::
:options: +NORMALIZE_WHITESPACE
:options: +NORMALIZE_WHITESPACE
+SKIP
>>> data1 = numpy.array(
... [[3,-3,100],
...
...
@@ -628,6 +628,7 @@ Learning a PLDA model can be performed by instantiating the class
:py:meth:`bob.learn.em.train` method.
.. doctest::
:options: +SKIP
>>> # This creates a PLDABase container for input feature of dimensionality
>>> # 3 and with subspaces F and G of rank 1 and 2, respectively.
...
...
@@ -645,6 +646,7 @@ obtained by calling the
:py:meth:`bob.learn.em.PLDAMachine.compute_log_likelihood()` method.
.. doctest::
:options: +SKIP
>>> plda = bob.learn.em.PLDAMachine(pldabase)
>>> samples = numpy.array(
...
...
@@ -658,6 +660,7 @@ a set of enrollment samples, then, several instances of
the :py:meth:`bob.learn.em.PLDATrainer.enroll()` method as follows.
.. doctest::
:options: +SKIP
>>> plda1 = bob.learn.em.PLDAMachine(pldabase)
>>> samples1 = numpy.array(
...
...
@@ -675,6 +678,7 @@ several test samples can be computed as previously described, and this
separately for each model.
.. doctest::
:options: +SKIP
>>> sample = numpy.array([3.2,-3.3,58], dtype=numpy.float64)
>>> l1 = plda1.compute_log_likelihood(sample)
...
...
@@ -691,6 +695,7 @@ computed, which is defined in more formal way by:
:math:`s = \ln(P(x_{test},x_{enroll})) - \ln(P(x_{test})P(x_{enroll}))`
.. doctest::
:options: +SKIP
>>> s1 = plda1(sample)
>>> s2 = plda2(sample)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment