From 69f2bb59e98d0f11bb6be072b7bbe49ba44918f1 Mon Sep 17 00:00:00 2001 From: Yannick DAYER <yannick.dayer@idiap.ch> Date: Fri, 26 Nov 2021 20:39:13 +0100 Subject: [PATCH] [doc] skip doctests of removed C++ modules --- doc/guide.rst | 23 ++++++++++++++--------- 1 file changed, 14 insertions(+), 9 deletions(-) diff --git a/doc/guide.rst b/doc/guide.rst index fecf54b..f22277b 100644 --- a/doc/guide.rst +++ b/doc/guide.rst @@ -100,7 +100,7 @@ This statistical model is defined in the class :py:class:`bob.learn.em.GMMMachine` as bellow. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> # Create a GMM with k=2 Gaussians with the dimensionality of 3 @@ -132,7 +132,7 @@ estimator. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -197,7 +197,7 @@ Follow bellow an snippet on how to train a GMM using the MAP estimator. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -275,7 +275,7 @@ prior GMM. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -340,7 +340,7 @@ Intersession variability modeling. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -414,7 +414,7 @@ The JFA statistical model is stored in this container Intersession variability modeling. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -489,7 +489,7 @@ The iVector statistical model is stored in this container a Total variability modeling. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -564,7 +564,7 @@ This scoring technique is implemented in :py:func:`bob.learn.em.linear_scoring`. The snippet bellow shows how to compute scores using this approximation. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> import bob.learn.em >>> import numpy @@ -611,7 +611,7 @@ Let us consider a training set of two classes, each with 3 samples of dimensionality 3. .. doctest:: - :options: +NORMALIZE_WHITESPACE + :options: +NORMALIZE_WHITESPACE +SKIP >>> data1 = numpy.array( ... [[3,-3,100], @@ -628,6 +628,7 @@ Learning a PLDA model can be performed by instantiating the class :py:meth:`bob.learn.em.train` method. .. doctest:: + :options: +SKIP >>> # This creates a PLDABase container for input feature of dimensionality >>> # 3 and with subspaces F and G of rank 1 and 2, respectively. @@ -645,6 +646,7 @@ obtained by calling the :py:meth:`bob.learn.em.PLDAMachine.compute_log_likelihood()` method. .. doctest:: + :options: +SKIP >>> plda = bob.learn.em.PLDAMachine(pldabase) >>> samples = numpy.array( @@ -658,6 +660,7 @@ a set of enrollment samples, then, several instances of the :py:meth:`bob.learn.em.PLDATrainer.enroll()` method as follows. .. doctest:: + :options: +SKIP >>> plda1 = bob.learn.em.PLDAMachine(pldabase) >>> samples1 = numpy.array( @@ -675,6 +678,7 @@ several test samples can be computed as previously described, and this separately for each model. .. doctest:: + :options: +SKIP >>> sample = numpy.array([3.2,-3.3,58], dtype=numpy.float64) >>> l1 = plda1.compute_log_likelihood(sample) @@ -691,6 +695,7 @@ computed, which is defined in more formal way by: :math:`s = \ln(P(x_{test},x_{enroll})) - \ln(P(x_{test})P(x_{enroll}))` .. doctest:: + :options: +SKIP >>> s1 = plda1(sample) >>> s2 = plda2(sample) -- GitLab