Skip to content
Snippets Groups Projects
Verified Commit 528c803f authored by Yannick DAYER's avatar Yannick DAYER
Browse files

doc(JFA): change seeds of doctests of ISV and JFA.

parent 9ae08264
No related branches found
No related tags found
No related merge requests found
......@@ -276,7 +276,7 @@ prior GMM.
>>> gmm_stats = prior_gmm.acc_stats(data)
>>> # Printing the responsibilities
>>> print(gmm_stats.n/gmm_stats.t)
[0.6 0.4]
[0.4 0.6]
Inter-Session Variability
......@@ -322,7 +322,7 @@ The snippet bellow shows how to:
>>> import bob.learn.em
>>> import numpy as np
>>> np.random.seed(10)
>>> np.random.seed(9)
>>> # Generating some fake data
>>> data_class1 = np.random.normal(0, 0.5, (10, 3))
......@@ -341,13 +341,13 @@ The snippet bellow shows how to:
>>> enroll_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> model = isv_machine.enroll_using_array(enroll_data)
>>> print(model)
[[ 0.54 0.246 0.505 1.617 -0.791 0.746]]
[[ 0.399 0.281 0.353 2.778 -1.319 0.876]]
>>> # Probing
>>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> score = isv_machine.score_using_array(model, probe_data)
>>> print(round(score, 3))
2.754
7.459
......@@ -403,12 +403,12 @@ such session variability model.
>>> enroll_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> model = jfa_machine.enroll_using_array(enroll_data)
>>> print(model)
(array([0.634, 0.165]), array([ 0., 0., 0., 0., -0., 0.]))
(array([1.569, 0.06 ]), array([ 0., -0., 0., -0., 0., 0.]))
>>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> score = jfa_machine.score_using_array(model, probe_data)
>>> print(round(score, 3))
0.471
6.084
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment