diff --git a/doc/guide.rst b/doc/guide.rst index d0d6b018754b50c96364ea2143e5f2fd53f76be0..39059333dafc3882db74b49afd5babc94616972c 100644 --- a/doc/guide.rst +++ b/doc/guide.rst @@ -276,7 +276,7 @@ prior GMM. >>> gmm_stats = prior_gmm.acc_stats(data) >>> # Printing the responsibilities >>> print(gmm_stats.n/gmm_stats.t) - [0.6 0.4] + [0.4 0.6] Inter-Session Variability @@ -322,7 +322,7 @@ The snippet bellow shows how to: >>> import bob.learn.em >>> import numpy as np - >>> np.random.seed(10) + >>> np.random.seed(9) >>> # Generating some fake data >>> data_class1 = np.random.normal(0, 0.5, (10, 3)) @@ -341,13 +341,13 @@ The snippet bellow shows how to: >>> enroll_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> model = isv_machine.enroll_using_array(enroll_data) >>> print(model) - [[ 0.54 0.246 0.505 1.617 -0.791 0.746]] + [[ 0.399 0.281 0.353 2.778 -1.319 0.876]] >>> # Probing >>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> score = isv_machine.score_using_array(model, probe_data) >>> print(round(score, 3)) - 2.754 + 7.459 @@ -403,12 +403,12 @@ such session variability model. >>> enroll_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> model = jfa_machine.enroll_using_array(enroll_data) >>> print(model) - (array([0.634, 0.165]), array([ 0., 0., 0., 0., -0., 0.])) + (array([1.569, 0.06 ]), array([ 0., -0., 0., -0., 0., 0.])) >>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]]) >>> score = jfa_machine.score_using_array(model, probe_data) >>> print(round(score, 3)) - 0.471 + 6.084