parser.add_argument('-t','--trainer-type',default='stump',choices=TRAINER.keys(),help="The type of weak trainer used for boosting.")
parser.add_argument('-l','--loss-type',default='exp',choices=LOSS.keys(),help="The type of loss function used in boosting to compute the weights for the weak classifiers.")
parser.add_argument('-r','--number-of-boosting-rounds',type=int,default=20,help="The number of boosting rounds, i.e., the number of weak classifiers.")
parser.add_argument('-s','--feature-selection-style',default='independent',choices={'indepenent','shared'},help="The feature selection style (only for multivariate classification with the LUT trainer).")
parser.add_argument('-d','--digits',type=int,nargs="+",choices=range(10),default=[5,6],help="Select the digits you want to compare.")
parser.add_argument('-n','--number-of-elements',type=int,help="For testing purposes: limit the number of training and test examples for each class.")
parser.add_argument('-c','--classifier-file',help="If selected, the strong classifier will be stored in this file (or loaded from it if it already exists).")