Skip to content
Snippets Groups Projects
Commit 003ad8c5 authored by Amir Mohammadi's avatar Amir Mohammadi
Browse files

Remove banca filelist based since bob.db.banca exists, fixes #9

parent f9b61bdb
No related branches found
No related tags found
1 merge request!31Remove banca filelist based since bob.db.banca exists
Pipeline #
Showing
with 9 additions and 1474 deletions
1001_f_g1_s01_1001_en_1 1001 1001
1002_f_g1_s01_1002_en_1 1002 1002
1003_f_g1_s01_1003_en_1 1003 1003
1004_f_g1_s01_1004_en_1 1004 1004
1005_f_g1_s01_1005_en_1 1005 1005
1006_f_g1_s01_1006_en_1 1006 1006
1007_f_g1_s01_1007_en_1 1007 1007
1008_f_g1_s01_1008_en_1 1008 1008
1009_f_g1_s01_1009_en_1 1009 1009
1010_f_g1_s01_1010_en_1 1010 1010
1011_f_g1_s01_1011_en_1 1011 1011
1012_f_g1_s01_1012_en_1 1012 1012
1013_f_g1_s01_1013_en_1 1013 1013
1027_m_g1_s01_1027_en_1 1027 1027
1028_m_g1_s01_1028_en_1 1028 1028
1029_m_g1_s01_1029_en_1 1029 1029
1030_m_g1_s01_1030_en_1 1030 1030
1031_m_g1_s01_1031_en_1 1031 1031
1032_m_g1_s01_1032_en_1 1032 1032
1033_m_g1_s01_1033_en_1 1033 1033
1034_m_g1_s01_1034_en_1 1034 1034
1035_m_g1_s01_1035_en_1 1035 1035
1036_m_g1_s01_1036_en_1 1036 1036
1037_m_g1_s01_1037_en_1 1037 1037
1038_m_g1_s01_1038_en_1 1038 1038
1039_m_g1_s01_1039_en_1 1039 1039
1001_f_g1_s05_1001_en_1 1001 1001
1002_f_g1_s05_1002_en_1 1002 1002
1003_f_g1_s05_1003_en_1 1003 1003
1004_f_g1_s05_1004_en_1 1004 1004
1005_f_g1_s05_1005_en_1 1005 1005
1006_f_g1_s05_1006_en_1 1006 1006
1007_f_g1_s05_1007_en_1 1007 1007
1008_f_g1_s05_1008_en_1 1008 1008
1009_f_g1_s05_1009_en_1 1009 1009
1010_f_g1_s05_1010_en_1 1010 1010
1011_f_g1_s05_1011_en_1 1011 1011
1012_f_g1_s05_1012_en_1 1012 1012
1013_f_g1_s05_1013_en_1 1013 1013
1027_m_g1_s05_1027_en_1 1027 1027
1028_m_g1_s05_1028_en_1 1028 1028
1029_m_g1_s05_1029_en_1 1029 1029
1030_m_g1_s05_1030_en_1 1030 1030
1031_m_g1_s05_1031_en_1 1031 1031
1032_m_g1_s05_1032_en_1 1032 1032
1033_m_g1_s05_1033_en_1 1033 1033
1034_m_g1_s05_1034_en_1 1034 1034
1035_m_g1_s05_1035_en_1 1035 1035
1036_m_g1_s05_1036_en_1 1036 1036
1037_m_g1_s05_1037_en_1 1037 1037
1038_m_g1_s05_1038_en_1 1038 1038
1039_m_g1_s05_1039_en_1 1039 1039
1001_f_g1_s09_1001_en_1 1001 1001
1002_f_g1_s09_1002_en_1 1002 1002
1003_f_g1_s09_1003_en_1 1003 1003
1004_f_g1_s09_1004_en_1 1004 1004
1005_f_g1_s09_1005_en_1 1005 1005
1006_f_g1_s09_1006_en_1 1006 1006
1007_f_g1_s09_1007_en_1 1007 1007
1008_f_g1_s09_1008_en_1 1008 1008
1009_f_g1_s09_1009_en_1 1009 1009
1010_f_g1_s09_1010_en_1 1010 1010
1011_f_g1_s09_1011_en_1 1011 1011
1012_f_g1_s09_1012_en_1 1012 1012
1013_f_g1_s09_1013_en_1 1013 1013
1027_m_g1_s09_1027_en_1 1027 1027
1028_m_g1_s09_1028_en_1 1028 1028
1029_m_g1_s09_1029_en_1 1029 1029
1030_m_g1_s09_1030_en_1 1030 1030
1031_m_g1_s09_1031_en_1 1031 1031
1032_m_g1_s09_1032_en_1 1032 1032
1033_m_g1_s09_1033_en_1 1033 1033
1034_m_g1_s09_1034_en_1 1034 1034
1035_m_g1_s09_1035_en_1 1035 1035
1036_m_g1_s09_1036_en_1 1036 1036
1037_m_g1_s09_1037_en_1 1037 1037
1038_m_g1_s09_1038_en_1 1038 1038
1039_m_g1_s09_1039_en_1 1039 1039
This diff is collapsed.
1014_f_g2_s01_1014_en_1 1014 1014
1015_f_g2_s01_1015_en_1 1015 1015
1016_f_g2_s01_1016_en_1 1016 1016
1017_f_g2_s01_1017_en_1 1017 1017
1018_f_g2_s01_1018_en_1 1018 1018
1019_f_g2_s01_1019_en_1 1019 1019
1020_f_g2_s01_1020_en_1 1020 1020
1021_f_g2_s01_1021_en_1 1021 1021
1022_f_g2_s01_1022_en_1 1022 1022
1023_f_g2_s01_1023_en_1 1023 1023
1024_f_g2_s01_1024_en_1 1024 1024
1025_f_g2_s01_1025_en_1 1025 1025
1026_f_g2_s01_1026_en_1 1026 1026
1040_m_g2_s01_1040_en_1 1040 1040
1041_m_g2_s01_1041_en_1 1041 1041
1042_m_g2_s01_1042_en_1 1042 1042
1043_m_g2_s01_1043_en_1 1043 1043
1044_m_g2_s01_1044_en_1 1044 1044
1045_m_g2_s01_1045_en_1 1045 1045
1046_m_g2_s01_1046_en_1 1046 1046
1047_m_g2_s01_1047_en_1 1047 1047
1048_m_g2_s01_1048_en_1 1048 1048
1049_m_g2_s01_1049_en_1 1049 1049
1050_m_g2_s01_1050_en_1 1050 1050
1051_m_g2_s01_1051_en_1 1051 1051
1052_m_g2_s01_1052_en_1 1052 1052
1014_f_g2_s05_1014_en_1 1014 1014
1015_f_g2_s05_1015_en_1 1015 1015
1016_f_g2_s05_1016_en_1 1016 1016
1017_f_g2_s05_1017_en_1 1017 1017
1018_f_g2_s05_1018_en_1 1018 1018
1019_f_g2_s05_1019_en_1 1019 1019
1020_f_g2_s05_1020_en_1 1020 1020
1021_f_g2_s05_1021_en_1 1021 1021
1022_f_g2_s05_1022_en_1 1022 1022
1023_f_g2_s05_1023_en_1 1023 1023
1024_f_g2_s05_1024_en_1 1024 1024
1025_f_g2_s05_1025_en_1 1025 1025
1026_f_g2_s05_1026_en_1 1026 1026
1040_m_g2_s05_1040_en_1 1040 1040
1041_m_g2_s05_1041_en_1 1041 1041
1042_m_g2_s05_1042_en_1 1042 1042
1043_m_g2_s05_1043_en_1 1043 1043
1044_m_g2_s05_1044_en_1 1044 1044
1045_m_g2_s05_1045_en_1 1045 1045
1046_m_g2_s05_1046_en_1 1046 1046
1047_m_g2_s05_1047_en_1 1047 1047
1048_m_g2_s05_1048_en_1 1048 1048
1049_m_g2_s05_1049_en_1 1049 1049
1050_m_g2_s05_1050_en_1 1050 1050
1051_m_g2_s05_1051_en_1 1051 1051
1052_m_g2_s05_1052_en_1 1052 1052
1014_f_g2_s09_1014_en_1 1014 1014
1015_f_g2_s09_1015_en_1 1015 1015
1016_f_g2_s09_1016_en_1 1016 1016
1017_f_g2_s09_1017_en_1 1017 1017
1018_f_g2_s09_1018_en_1 1018 1018
1019_f_g2_s09_1019_en_1 1019 1019
1020_f_g2_s09_1020_en_1 1020 1020
1021_f_g2_s09_1021_en_1 1021 1021
1022_f_g2_s09_1022_en_1 1022 1022
1023_f_g2_s09_1023_en_1 1023 1023
1024_f_g2_s09_1024_en_1 1024 1024
1025_f_g2_s09_1025_en_1 1025 1025
1026_f_g2_s09_1026_en_1 1026 1026
1040_m_g2_s09_1040_en_1 1040 1040
1041_m_g2_s09_1041_en_1 1041 1041
1042_m_g2_s09_1042_en_1 1042 1042
1043_m_g2_s09_1043_en_1 1043 1043
1044_m_g2_s09_1044_en_1 1044 1044
1045_m_g2_s09_1045_en_1 1045 1045
1046_m_g2_s09_1046_en_1 1046 1046
1047_m_g2_s09_1047_en_1 1047 1047
1048_m_g2_s09_1048_en_1 1048 1048
1049_m_g2_s09_1049_en_1 1049 1049
1050_m_g2_s09_1050_en_1 1050 1050
1051_m_g2_s09_1051_en_1 1051 1051
1052_m_g2_s09_1052_en_1 1052 1052
This diff is collapsed.
9001_f_wm_s01_9001_en_1 9001
9001_f_wm_s01_9002_en_1 9001
9003_m_wm_s01_9003_en_1 9003
9003_m_wm_s01_9004_en_1 9003
9005_m_wm_s01_9005_en_1 9005
9005_m_wm_s01_9006_en_1 9005
9007_m_wm_s01_9007_en_1 9007
9007_m_wm_s01_9008_en_1 9007
9009_m_wm_s01_9009_en_1 9009
9009_m_wm_s01_9010_en_1 9009
9011_m_wm_s01_9011_en_1 9011
9011_m_wm_s01_9012_en_1 9011
9013_f_wm_s01_9013_en_1 9013
9013_f_wm_s01_9014_en_1 9013
9015_f_wm_s01_9015_en_1 9015
9015_f_wm_s01_9016_en_1 9015
9017_f_wm_s01_9017_en_1 9017
9017_f_wm_s01_9018_en_1 9017
9019_f_wm_s01_9019_en_1 9019
9019_f_wm_s01_9020_en_1 9019
9021_m_wm_s05_9021_en_1 9021
9021_m_wm_s05_9022_en_1 9021
9023_f_wm_s05_9023_en_1 9023
9023_f_wm_s05_9024_en_1 9023
9025_m_wm_s05_9025_en_1 9025
9025_m_wm_s05_9026_en_1 9025
9027_m_wm_s05_9027_en_1 9027
9027_m_wm_s05_9028_en_1 9027
9029_f_wm_s05_9029_en_1 9029
9029_f_wm_s05_9030_en_1 9029
9031_f_wm_s05_9031_en_1 9031
9031_f_wm_s05_9032_en_1 9031
9033_m_wm_s05_9033_en_1 9033
9033_m_wm_s05_9034_en_1 9033
9035_m_wm_s05_9035_en_1 9035
9035_m_wm_s05_9036_en_1 9035
9037_f_wm_s05_9037_en_1 9037
9037_f_wm_s05_9038_en_1 9037
9039_f_wm_s05_9039_en_1 9039
9039_f_wm_s05_9040_en_1 9039
9041_m_wm_s09_9041_en_1 9041
9041_m_wm_s09_9042_en_1 9041
9043_f_wm_s09_9043_en_1 9043
9043_f_wm_s09_9044_en_1 9043
9045_m_wm_s09_9045_en_1 9045
9045_m_wm_s09_9046_en_1 9045
9047_f_wm_s09_9047_en_1 9047
9047_f_wm_s09_9048_en_1 9047
9049_m_wm_s09_9049_en_1 9049
9049_m_wm_s09_9050_en_1 9049
9051_m_wm_s09_9051_en_1 9051
9051_m_wm_s09_9052_en_1 9051
9053_f_wm_s09_9053_en_1 9053
9053_f_wm_s09_9054_en_1 9053
9055_f_wm_s09_9055_en_1 9055
9055_f_wm_s09_9056_en_1 9055
9057_m_wm_s09_9057_en_1 9057
9057_m_wm_s09_9058_en_1 9057
9059_f_wm_s09_9059_en_1 9059
9059_f_wm_s09_9060_en_1 9059
9001_f_wm_s01_9001_en_1 9001
9001_f_wm_s01_9002_en_1 9001
9003_m_wm_s01_9003_en_1 9003
9003_m_wm_s01_9004_en_1 9003
9005_m_wm_s01_9005_en_1 9005
9005_m_wm_s01_9006_en_1 9005
9007_m_wm_s01_9007_en_1 9007
9007_m_wm_s01_9008_en_1 9007
9009_m_wm_s01_9009_en_1 9009
9009_m_wm_s01_9010_en_1 9009
9011_m_wm_s01_9011_en_1 9011
9011_m_wm_s01_9012_en_1 9011
9013_f_wm_s01_9013_en_1 9013
9013_f_wm_s01_9014_en_1 9013
9015_f_wm_s01_9015_en_1 9015
9015_f_wm_s01_9016_en_1 9015
9017_f_wm_s01_9017_en_1 9017
9017_f_wm_s01_9018_en_1 9017
9019_f_wm_s01_9019_en_1 9019
9019_f_wm_s01_9020_en_1 9019
9021_m_wm_s05_9021_en_1 9021
9021_m_wm_s05_9022_en_1 9021
9023_f_wm_s05_9023_en_1 9023
9023_f_wm_s05_9024_en_1 9023
9025_m_wm_s05_9025_en_1 9025
9025_m_wm_s05_9026_en_1 9025
9027_m_wm_s05_9027_en_1 9027
9027_m_wm_s05_9028_en_1 9027
9029_f_wm_s05_9029_en_1 9029
9029_f_wm_s05_9030_en_1 9029
9031_f_wm_s05_9031_en_1 9031
9031_f_wm_s05_9032_en_1 9031
9033_m_wm_s05_9033_en_1 9033
9033_m_wm_s05_9034_en_1 9033
9035_m_wm_s05_9035_en_1 9035
9035_m_wm_s05_9036_en_1 9035
9037_f_wm_s05_9037_en_1 9037
9037_f_wm_s05_9038_en_1 9037
9039_f_wm_s05_9039_en_1 9039
9039_f_wm_s05_9040_en_1 9039
9041_m_wm_s09_9041_en_1 9041
9041_m_wm_s09_9042_en_1 9041
9043_f_wm_s09_9043_en_1 9043
9043_f_wm_s09_9044_en_1 9043
9045_m_wm_s09_9045_en_1 9045
9045_m_wm_s09_9046_en_1 9045
9047_f_wm_s09_9047_en_1 9047
9047_f_wm_s09_9048_en_1 9047
9049_m_wm_s09_9049_en_1 9049
9049_m_wm_s09_9050_en_1 9049
9051_m_wm_s09_9051_en_1 9051
9051_m_wm_s09_9052_en_1 9051
9053_f_wm_s09_9053_en_1 9053
9053_f_wm_s09_9054_en_1 9053
9055_f_wm_s09_9055_en_1 9055
9055_f_wm_s09_9056_en_1 9055
9057_m_wm_s09_9057_en_1 9057
9057_m_wm_s09_9058_en_1 9057
9059_f_wm_s09_9059_en_1 9059
9059_f_wm_s09_9060_en_1 9059
9001_f_wm_s01_9001_en_1 9001
9001_f_wm_s01_9002_en_1 9001
9003_m_wm_s01_9003_en_1 9003
9003_m_wm_s01_9004_en_1 9003
9005_m_wm_s01_9005_en_1 9005
9005_m_wm_s01_9006_en_1 9005
9007_m_wm_s01_9007_en_1 9007
9007_m_wm_s01_9008_en_1 9007
9009_m_wm_s01_9009_en_1 9009
9009_m_wm_s01_9010_en_1 9009
9011_m_wm_s01_9011_en_1 9011
9011_m_wm_s01_9012_en_1 9011
9013_f_wm_s01_9013_en_1 9013
9013_f_wm_s01_9014_en_1 9013
9015_f_wm_s01_9015_en_1 9015
9015_f_wm_s01_9016_en_1 9015
9017_f_wm_s01_9017_en_1 9017
9017_f_wm_s01_9018_en_1 9017
9019_f_wm_s01_9019_en_1 9019
9019_f_wm_s01_9020_en_1 9019
9021_m_wm_s05_9021_en_1 9021
9021_m_wm_s05_9022_en_1 9021
9023_f_wm_s05_9023_en_1 9023
9023_f_wm_s05_9024_en_1 9023
9025_m_wm_s05_9025_en_1 9025
9025_m_wm_s05_9026_en_1 9025
9027_m_wm_s05_9027_en_1 9027
9027_m_wm_s05_9028_en_1 9027
9029_f_wm_s05_9029_en_1 9029
9029_f_wm_s05_9030_en_1 9029
9031_f_wm_s05_9031_en_1 9031
9031_f_wm_s05_9032_en_1 9031
9033_m_wm_s05_9033_en_1 9033
9033_m_wm_s05_9034_en_1 9033
9035_m_wm_s05_9035_en_1 9035
9035_m_wm_s05_9036_en_1 9035
9037_f_wm_s05_9037_en_1 9037
9037_f_wm_s05_9038_en_1 9037
9039_f_wm_s05_9039_en_1 9039
9039_f_wm_s05_9040_en_1 9039
9041_m_wm_s09_9041_en_1 9041
9041_m_wm_s09_9042_en_1 9041
9043_f_wm_s09_9043_en_1 9043
9043_f_wm_s09_9044_en_1 9043
9045_m_wm_s09_9045_en_1 9045
9045_m_wm_s09_9046_en_1 9045
9047_f_wm_s09_9047_en_1 9047
9047_f_wm_s09_9048_en_1 9047
9049_m_wm_s09_9049_en_1 9049
9049_m_wm_s09_9050_en_1 9049
9051_m_wm_s09_9051_en_1 9051
9051_m_wm_s09_9052_en_1 9051
9053_f_wm_s09_9053_en_1 9053
9053_f_wm_s09_9054_en_1 9053
9055_f_wm_s09_9055_en_1 9055
9055_f_wm_s09_9056_en_1 9055
9057_m_wm_s09_9057_en_1 9057
9057_m_wm_s09_9058_en_1 9057
9059_f_wm_s09_9059_en_1 9059
9059_f_wm_s09_9060_en_1 9059
#!/usr/bin/env python
import pkg_resources
import bob.bio.base
from bob.bio.spear.database import AudioBioFile
banca_wav_directory = "[YOUR_BANCA_WAV_DIRECTORY]"
database = bob.bio.base.database.FileListBioDatabase(pkg_resources.resource_filename('bob.bio.spear', 'config/database/banca'),
'banca',
bio_file_class=AudioBioFile,
protocol='G',
original_directory=banca_wav_directory,
original_extension=".wav")
...@@ -103,12 +103,3 @@ def test_timit(): ...@@ -103,12 +103,3 @@ def test_timit():
except IOError as e: except IOError as e:
raise SkipTest( raise SkipTest(
"The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e) "The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e)
def test_banca():
database = bob.bio.base.load_resource('banca-audio', 'database', preferred_package='bob.bio.spear')
try:
check_database(database, groups=('dev', 'eval'))
except IOError as e:
raise SkipTest(
"The database could not queried; probably the db.sql3 file is missing. Here is the error: '%s'" % e)
...@@ -90,11 +90,13 @@ Particularly, here we can enable ROC curves, DET plots, CMC curves and the compu ...@@ -90,11 +90,13 @@ Particularly, here we can enable ROC curves, DET plots, CMC curves and the compu
Experiments on different databases Experiments on different databases
-------------------------------------------------------- --------------------------------------------------------
To make you more familiar with the tool, we provide you examples of different toolchains applied on different databases: Voxforge, BANCA, TIMIT, MOBIO, and NIST SRE 2012. To make you more familiar with the tool, we provide you examples of different toolchains applied on different databases: Voxforge, TIMIT, MOBIO, and NIST SRE 2012.
1. Voxforge dataset
~~~~~~~~~~~~~~~~~~~
`Voxforge`_ is a free database used in free speech recognition engines. We randomly selected a small part of the english corpus (< 1GB). It is used as a toy example for our speaker recognition tool since experiment can be easily run on a local machine, and the results can be obtained in a reasonnable amount of time (< 2h). `Voxforge`_ is a free database used in free speech recognition engines. We randomly selected a small part of the english corpus (< 1GB). It is used as a toy example for our speaker recognition tool since experiment can be easily run on a local machine, and the results can be obtained in a reasonnable amount of time (< 2h).
Unlike TIMIT and BANCA, this dataset is completely free of charge. Unlike TIMIT, this dataset is completely free of charge.
More details about how to download the audio files used in our experiments, and how the data is split into Training, Development and Evaluation set can be found here:: More details about how to download the audio files used in our experiments, and how the data is split into Training, Development and Evaluation set can be found here::
...@@ -161,21 +163,7 @@ The scoring computation can also be done using **PLDA**:: ...@@ -161,21 +163,7 @@ The scoring computation can also be done using **PLDA**::
Note that in the previous examples, our goal is not to optimize the parameters on the DEV set but to provide examples of use. Note that in the previous examples, our goal is not to optimize the parameters on the DEV set but to provide examples of use.
2. BANCA dataset 2. TIMIT dataset
~~~~~~~~~~~~~~~~
`BANCA`_ is a simple bimodal database with relatively clean data. The results are already very good with a simple baseline UBM-GMM system. An example of use can be::
$ bin/verify.py -vv -d banca-audio -p energy-2gauss -e mfcc-60 -a gmm-banca -s banca_G --groups {dev,eval}
The configuration in this example is similar to the previous one with the only difference of using the regular LLR instead of its linear approximation.
Here is the performance of this system:
* ``DEV: EER = 0.91%``
* ``EVAL: EER = 0.75%``
3. TIMIT dataset
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
`TIMIT`_ is one of the oldest databases (year 1993) used to evaluate speaker recognition systems. In the following example, the processing is done on the development set, and LFCC features are used:: `TIMIT`_ is one of the oldest databases (year 1993) used to evaluate speaker recognition systems. In the following example, the processing is done on the development set, and LFCC features are used::
...@@ -186,7 +174,7 @@ Here is the performance of the system on the Development set: ...@@ -186,7 +174,7 @@ Here is the performance of the system on the Development set:
* ``DEV: EER = 2.68%`` * ``DEV: EER = 2.68%``
4. MOBIO dataset 3. MOBIO dataset
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
This is a more challenging database. The noise and the short duration of the segments make the task of speaker recognition relatively difficult. The following experiment on male group (Mobile-0) uses the 4Hz modulation energy based VAD, and the ISV (with dimU=50) modelling technique:: This is a more challenging database. The noise and the short duration of the segments make the task of speaker recognition relatively difficult. The following experiment on male group (Mobile-0) uses the 4Hz modulation energy based VAD, and the ISV (with dimU=50) modelling technique::
...@@ -200,7 +188,7 @@ Here is the performance of this system: ...@@ -200,7 +188,7 @@ Here is the performance of this system:
To generate the results presented in the ICASSP 2014 paper, please check the script included in the `icassp` folder of the toolbox. To generate the results presented in the ICASSP 2014 paper, please check the script included in the `icassp` folder of the toolbox.
Note that the MOBIO dataset has different protocols, and that are all implemented in `bob.db.mobio`_. But in this toolbox, we provide separately mobile-0 protocol (into filelist format) for simplicity. Note that the MOBIO dataset has different protocols, and that are all implemented in `bob.db.mobio`_. But in this toolbox, we provide separately mobile-0 protocol (into filelist format) for simplicity.
5. NIST SRE 2012 4. NIST SRE 2012
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
We first invite you to read the paper describing our system submitted to the NIST SRE 2012 Evaluation. The protocols on the development set are the results of a joint work by the I4U group. To reproduce the results, please check this dedicated package:: We first invite you to read the paper describing our system submitted to the NIST SRE 2012 Evaluation. The protocols on the development set are the results of a joint work by the I4U group. To reproduce the results, please check this dedicated package::
......
...@@ -21,7 +21,6 @@ ...@@ -21,7 +21,6 @@
.. _virtualbox: https://www.virtualbox.org .. _virtualbox: https://www.virtualbox.org
.. _hdf5: http://www.hdfgroup.org/HDF5 .. _hdf5: http://www.hdfgroup.org/HDF5
.. _Voxforge: http://www.voxforge.org/ .. _Voxforge: http://www.voxforge.org/
.. _BANCA: http://www.ee.surrey.ac.uk/CVSSP/banca/
.. _TIMIT: http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC93S1 .. _TIMIT: http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC93S1
.. _logistic regression: http://en.wikipedia.org/wiki/Logistic_regression .. _logistic regression: http://en.wikipedia.org/wiki/Logistic_regression
.. _spear: https://pypi.python.org/pypi/bob.bio.spear .. _spear: https://pypi.python.org/pypi/bob.bio.spear
......
...@@ -100,7 +100,6 @@ setup( ...@@ -100,7 +100,6 @@ setup(
entry_points = { entry_points = {
'bob.bio.database': [ 'bob.bio.database': [
'banca-audio = bob.bio.spear.config.database.banca_audio_G:database',
'timit = bob.bio.spear.config.database.timit:database', 'timit = bob.bio.spear.config.database.timit:database',
'mobio-audio-male = bob.bio.spear.config.database.mobio_audio_male:database', 'mobio-audio-male = bob.bio.spear.config.database.mobio_audio_male:database',
'mobio-audio-female = bob.bio.spear.config.database.mobio_audio_female:database', 'mobio-audio-female = bob.bio.spear.config.database.mobio_audio_female:database',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment