Skip to content
Snippets Groups Projects
Commit d40ff779 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

Removed TF1 baseline

parent ebab9ce4
No related branches found
No related tags found
1 merge request!79Arcface from InsightFace
from bob.bio.face.embeddings import ArcFace_InsightFaceTF
from bob.bio.face.config.baseline.helpers import embedding_transformer_112x112
from bob.bio.base.pipelines.vanilla_biometrics import (
Distance,
VanillaBiometricsPipeline,
)
if "database" in locals():
annotation_type = database.annotation_type
fixed_positions = database.fixed_positions
else:
annotation_type = None
fixed_positions = None
def load(annotation_type, fixed_positions=None):
transformer = embedding_transformer_112x112(
ArcFace_InsightFaceTF(), annotation_type, fixed_positions
)
algorithm = Distance()
return VanillaBiometricsPipeline(transformer, algorithm)
pipeline = load(annotation_type, fixed_positions)
transformer = pipeline.transformer
\ No newline at end of file
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
import os
from sklearn.base import TransformerMixin, BaseEstimator
from .tensorflow_compat_v1 import TensorflowCompatV1
from bob.io.image import to_matplotlib
import numpy as np
from sklearn.utils import check_array
class ArcFace_InsightFaceTF(TensorflowCompatV1):
"""
Models copied from
https://github.com/luckycallor/InsightFace-tensorflow/blob/master/backbones/utils.py
The input shape of this model is :math:`3 \times 112 \times 112`
The output embedding is :math:`n \times 512`, where :math:`n` is the number of samples
"""
def __init__(self):
bob_rc_variable = "bob.bio.face.arcface_tf_path"
urls = [
"https://www.idiap.ch/software/bob/data/bob/bob.bio.face/master/arcface_insight_tf.tar.gz"
]
model_subdirectory = "arcface_tf_path"
checkpoint_filename = self.get_modelpath(bob_rc_variable, model_subdirectory)
self.download_model(checkpoint_filename, urls)
input_shape = (1, 112, 112, 3)
architecture_fn = init_network
super().__init__(checkpoint_filename, input_shape, architecture_fn)
def transform(self, data):
# https://github.com/luckycallor/InsightFace-tensorflow/blob/master/evaluate.py#L42
data = check_array(data, allow_nd=True)
data = data / 127.5 - 1.0
return super().transform(data)
def load_model(self):
self.input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, shape=self.input_shape, name="input_image",
)
prelogits = self.architecture_fn(self.input_tensor)
self.embedding = prelogits
# Initializing the variables of the current graph
self.session = tf.compat.v1.Session()
self.session.run(tf.compat.v1.global_variables_initializer())
# Loading the last checkpoint and overwriting the current variables
saver = tf.compat.v1.train.Saver()
if os.path.splitext(self.checkpoint_filename)[1] == ".meta":
saver.restore(
self.session,
tf.train.latest_checkpoint(os.path.dirname(self.checkpoint_filename)),
)
elif os.path.isdir(self.checkpoint_filename):
saver.restore(
self.session, tf.train.latest_checkpoint(self.checkpoint_filename)
)
else:
saver.restore(self.session, self.checkpoint_filename)
self.loaded = True
###########################
# CODE COPIED FROM
# https://github.com/luckycallor/InsightFace-tensorflow/blob/master/backbones/utils.py
###########################
import tensorflow as tf
import tensorflow.contrib.slim as slim
from collections import namedtuple
def init_network(input_tensor):
with tf.variable_scope("embd_extractor", reuse=False):
arg_sc = resnet_arg_scope()
with slim.arg_scope(arg_sc):
net, _ = resnet_v2_m_50(input_tensor, is_training=False, return_raw=True)
net = slim.batch_norm(net, activation_fn=None, is_training=False)
net = slim.dropout(net, keep_prob=1, is_training=False)
net = slim.flatten(net)
net = slim.fully_connected(net, 512, normalizer_fn=None, activation_fn=None)
net = slim.batch_norm(
net, scale=False, activation_fn=None, is_training=False
)
# end_points['embds'] = net
return net
def resnet_v2_m_50(
inputs,
num_classes=None,
is_training=True,
return_raw=True,
global_pool=True,
output_stride=None,
spatial_squeeze=True,
reuse=None,
scope="resnet_v2_50",
):
"""ResNet-50 model of [1]. See resnet_v2() for arg and return description."""
blocks = [
resnet_v2_block("block1", base_depth=16, num_units=3, stride=2),
resnet_v2_block("block2", base_depth=32, num_units=4, stride=2),
resnet_v2_block("block3", base_depth=64, num_units=14, stride=2),
resnet_v2_block("block4", base_depth=128, num_units=3, stride=2),
]
return resnet_v2_m(
inputs,
blocks,
num_classes,
is_training=is_training,
return_raw=return_raw,
global_pool=global_pool,
output_stride=output_stride,
include_root_block=True,
spatial_squeeze=spatial_squeeze,
reuse=reuse,
scope=scope,
)
def resnet_v2_block(scope, base_depth, num_units, stride):
return Block(
scope,
block,
[{"depth": base_depth * 4, "stride": stride}]
+ (num_units - 1) * [{"depth": base_depth * 4, "stride": 1}],
)
class Block(namedtuple("Block", ["scope", "unit_fn", "args"])):
"""A named tuple describing a ResNet block.
Its parts are:
scope: The scope of the `Block`.
unit_fn: The ResNet unit function which takes as input a `Tensor` and returns another `Tensor` with the output of the ResNet unit.
args: A list of length equal to the number of units in the `Block`. The list contains one (depth, depth_bottleneck, stride) tuple for each unit in the block to serve as argument to unit_fn.
"""
pass
def resnet_v2_m(
inputs,
blocks,
num_classes=None,
is_training=True,
return_raw=True,
global_pool=True,
output_stride=None,
include_root_block=True,
spatial_squeeze=True,
reuse=None,
scope=None,
):
with tf.variable_scope(scope, "resnet_v2", [inputs], reuse=reuse) as sc:
end_points_collection = sc.original_name_scope + "_end_points"
with slim.arg_scope(
[slim.conv2d, bottleneck, stack_blocks_dense],
outputs_collections=end_points_collection,
):
with slim.arg_scope([slim.batch_norm], is_training=is_training):
net = inputs
if include_root_block:
if output_stride is not None:
if output_stride % 4 != 0:
raise ValueError(
"The output_stride needs to be a multiple of 4."
)
output_stride /= 4
with slim.arg_scope(
[slim.conv2d], activation_fn=None, normalizer_fn=None
):
net = conv2d_same(net, 64, 3, stride=1, scope="conv1")
# net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
net = stack_blocks_dense(net, blocks, output_stride)
end_points = slim.utils.convert_collection_to_dict(
end_points_collection
)
if return_raw:
return net, end_points
net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope="postnorm")
end_points[sc.name + "/postnorm"] = net
if global_pool:
net = tf.reduce_mean(net, [1, 2], name="pool5", keep_dims=True)
end_points["global_pool"] = net
if num_classes:
net = slim.conv2d(
net,
num_classes,
[1, 1],
activation_fn=None,
normalizer_fn=None,
scope="logits",
)
end_points[sc.name + "/logits"] = net
if spatial_squeeze:
net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")
end_points[sc.name + "/spatial_squeeze"] = net
end_points["predictions"] = slim.softmax(net, scope="predictions")
return net, end_points
def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None):
if stride == 1:
return slim.conv2d(
inputs,
num_outputs,
kernel_size,
stride=1,
rate=rate,
padding="SAME",
scope=scope,
)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
inputs = tf.pad(
inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]
) # zero padding
return slim.conv2d(
inputs,
num_outputs,
kernel_size,
stride=stride,
rate=rate,
padding="VALID",
scope=scope,
)
@slim.add_arg_scope
def stack_blocks_dense(
net,
blocks,
output_stride=None,
store_non_strided_activations=False,
outputs_collections=None,
):
current_stride = 1
rate = 1
for block in blocks:
with tf.variable_scope(block.scope, "block", [net]) as sc:
block_stride = 1
for i, unit in enumerate(block.args):
if store_non_strided_activations and i == len(block.args) - 1:
block_stride = unit.get("stride", 1)
unit = dict(unit, stride=1)
with tf.variable_scope("unit_%d" % (i + 1), values=[net]):
if output_stride is not None and current_stride == output_stride:
net = block.unit_fn(net, rate=rate, **dict(unit, stride=1))
rate *= unit.get("stride", 1)
else:
net = block.unit_fn(net, rate=1, **unit)
current_stride *= unit.get("stride", 1)
if output_stride is not None and current_stride > output_stride:
raise ValueError(
"The target output_stride cannot be reached."
)
net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
if output_stride is not None and current_stride == output_stride:
rate *= block_stride
else:
net = subsample(net, block_stride)
current_stride *= block_stride
if output_stride is not None and current_stride > output_stride:
raise ValueError("The target output_stride cannot be reached.")
if output_stride is not None and current_stride != output_stride:
raise ValueError("The target output_stride cannot be reached.")
return net
def block(inputs, depth, stride, rate=1, outputs_collections=None, scope=None):
with tf.variable_scope(scope, "block_v2", [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = slim.batch_norm(inputs, activation_fn=tf.nn.leaky_relu, scope="preact")
if depth == depth_in:
shortcut = subsample(inputs, stride, "shortcut")
else:
shortcut = slim.conv2d(
preact,
depth,
[1, 1],
stride=stride,
normalizer_fn=None,
activation_fn=None,
scope="shortcut",
)
residual = conv2d_same(preact, depth, 3, stride, rate=rate, scope="conv1")
residual = slim.conv2d(
residual,
depth,
[3, 3],
stride=1,
normalizer_fn=None,
activation_fn=None,
scope="conv2",
)
# residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3')
output = shortcut + residual
return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)
@slim.add_arg_scope
def bottleneck(
inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None,
):
with tf.variable_scope(scope, "bottleneck_v2", [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = slim.batch_norm(inputs, activation_fn=tf.nn.leaky_relu, scope="preact")
if depth == depth_in:
shortcut = subsample(inputs, stride, "shortcut")
else:
shortcut = slim.conv2d(
preact,
depth,
[1, 1],
stride=stride,
normalizer_fn=None,
activation_fn=None,
scope="shortcut",
)
residual = slim.conv2d(
preact, depth_bottleneck, [1, 1], stride=1, scope="conv1"
)
residual = conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope="conv2"
)
residual = slim.conv2d(
residual,
depth,
[1, 1],
stride=1,
normalizer_fn=None,
activation_fn=None,
scope="conv3",
)
output = shortcut + residual
return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)
def subsample(inputs, factor, scope=None):
if factor == 1:
return inputs
else:
return slim.max_pool2d(
inputs, [1, 1], stride=factor, scope=scope
) # padding='VALID'
def resnet_arg_scope(
weight_decay=0.0001,
batch_norm_decay=0.9,
batch_norm_epsilon=2e-5,
batch_norm_scale=True,
activation_fn=tf.nn.leaky_relu,
use_batch_norm=True,
batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS,
):
batch_norm_params = {
"decay": batch_norm_decay,
"epsilon": batch_norm_epsilon,
"scale": batch_norm_scale,
"updates_collections": batch_norm_updates_collections,
"fused": None, # Use fused batch norm if possible.
"param_regularizers": {"gamma": slim.l2_regularizer(weight_decay)},
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.contrib.layers.xavier_initializer(uniform=False),
activation_fn=activation_fn,
normalizer_fn=slim.batch_norm if use_batch_norm else None,
normalizer_params=batch_norm_params,
):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding="SAME") as arg_sc:
return arg_sc
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment