Skip to content
Snippets Groups Projects
Commit cadbfbb7 authored by Amir MOHAMMADI's avatar Amir MOHAMMADI
Browse files

Merge branch 'fix-conda-build' into 'master'

Fix conda build

See merge request !42
parents 4d2dd256 0dabc3ac
Branches
No related tags found
1 merge request!42Fix conda build
Pipeline #
...@@ -13,7 +13,7 @@ class DCTBlocks (Extractor): ...@@ -13,7 +13,7 @@ class DCTBlocks (Extractor):
"""Extracts *Discrete Cosine Transform* (DCT) features from (overlapping) image blocks. """Extracts *Discrete Cosine Transform* (DCT) features from (overlapping) image blocks.
These features are based on the :py:class:`bob.ip.base.DCTFeatures` class. These features are based on the :py:class:`bob.ip.base.DCTFeatures` class.
The default parametrization is the one that performed best on the BANCA database in [WMM+11]_. The default parametrization is the one that performed best on the BANCA database in [WMM11]_.
Usually, these features are used in combination with the algorithms defined in :ref:`bob.bio.gmm <bob.bio.gmm>`. Usually, these features are used in combination with the algorithms defined in :ref:`bob.bio.gmm <bob.bio.gmm>`.
However, you can try to use them with other algorithms. However, you can try to use them with other algorithms.
......
...@@ -11,7 +11,7 @@ import math ...@@ -11,7 +11,7 @@ import math
from bob.bio.base.extractor import Extractor from bob.bio.base.extractor import Extractor
class LGBPHS (Extractor): class LGBPHS (Extractor):
"""Extracts *Local Gabor Binary Pattern Histogram Sequences* (LGBPHS) [ZSG+05]_ from the images, using functionality from :ref:`bob.ip.base <bob.ip.base>` and :ref:`bob.ip.gabor <bob.ip.gabor>`. """Extracts *Local Gabor Binary Pattern Histogram Sequences* (LGBPHS) [ZSG05]_ from the images, using functionality from :ref:`bob.ip.base <bob.ip.base>` and :ref:`bob.ip.gabor <bob.ip.gabor>`.
The block size and the overlap of the blocks can be varied, as well as the parameters of the Gabor wavelet (:py:class:`bob.ip.gabor.Transform`) and the LBP extractor (:py:class:`bob.ip.base.LBP`). The block size and the overlap of the blocks can be varied, as well as the parameters of the Gabor wavelet (:py:class:`bob.ip.gabor.Transform`) and the LBP extractor (:py:class:`bob.ip.base.LBP`).
...@@ -32,14 +32,14 @@ class LGBPHS (Extractor): ...@@ -32,14 +32,14 @@ class LGBPHS (Extractor):
use_gabor_phases : bool use_gabor_phases : bool
Extract also the Gabor phases (inline) and not only the absolute values. Extract also the Gabor phases (inline) and not only the absolute values.
In this case, Extended LGBPHS features [ZSQ+09]_ will be extracted. In this case, Extended LGBPHS features [ZSQ09]_ will be extracted.
lbp_radius, lbp_neighbor_count, lbp_uniform, lbp_circular, lbp_rotation_invariant, lbp_compare_to_average, lbp_add_average lbp_radius, lbp_neighbor_count, lbp_uniform, lbp_circular, lbp_rotation_invariant, lbp_compare_to_average, lbp_add_average
The parameters of the LBP. The parameters of the LBP.
Please see :py:class:`bob.ip.base.LBP` for the documentation of these values. Please see :py:class:`bob.ip.base.LBP` for the documentation of these values.
.. note:: .. note::
The default values are as given in [ZSG+05]_ (the values of [ZSQ+09]_ might differ). The default values are as given in [ZSG05]_ (the values of [ZSQ09]_ might differ).
sparse_histogram : bool sparse_histogram : bool
If specified, the histograms will be handled in a sparse way. If specified, the histograms will be handled in a sparse way.
......
...@@ -45,7 +45,6 @@ requirements: ...@@ -45,7 +45,6 @@ requirements:
- bob.ip.facedetect - bob.ip.facedetect
- bob.ip.flandmark - bob.ip.flandmark
- matplotlib {{ matplotlib }} - matplotlib {{ matplotlib }}
- gridtk {{ gridtk }}
run: run:
- python - python
- setuptools - setuptools
...@@ -68,6 +67,23 @@ test: ...@@ -68,6 +67,23 @@ test:
- coverage - coverage
- sphinx - sphinx
- sphinx_rtd_theme - sphinx_rtd_theme
- bob.db.arface
- bob.db.atnt
- bob.db.banca
- bob.db.caspeal
- bob.db.frgc
- bob.db.gbu
- bob.db.ijba
- bob.db.lfw
- bob.db.mobio
- bob.db.msu_mfsd_mod
- bob.db.multipie
- bob.db.replay
- bob.db.replaymobile
- bob.db.scface
- bob.db.xm2vts
- bob.bio.gmm
- gridtk
about: about:
home: https://www.idiap.ch/software/bob/ home: https://www.idiap.ch/software/bob/
......
...@@ -72,7 +72,7 @@ The algorithms present an (incomplete) set of state-of-the-art face recognition ...@@ -72,7 +72,7 @@ The algorithms present an (incomplete) set of state-of-the-art face recognition
- feature : :py:class:`bob.bio.base.extractor.Linearize` - feature : :py:class:`bob.bio.base.extractor.Linearize`
- algorithm : :py:class:`bob.bio.base.algorithm.PCA` - algorithm : :py:class:`bob.bio.base.algorithm.PCA`
* ``lda``: The LDA algorithm applies a *Linear Discriminant Analysis* (LDA), here we use the combined PCA+LDA approach [ZKC+98]_: * ``lda``: The LDA algorithm applies a *Linear Discriminant Analysis* (LDA), here we use the combined PCA+LDA approach [ZKC98]_:
- preprocessor : :py:class:`bob.bio.face.preprocessor.FaceCrop` - preprocessor : :py:class:`bob.bio.face.preprocessor.FaceCrop`
- feature : :py:class:`bob.bio.face.extractor.Eigenface` - feature : :py:class:`bob.bio.face.extractor.Eigenface`
...@@ -85,7 +85,7 @@ The algorithms present an (incomplete) set of state-of-the-art face recognition ...@@ -85,7 +85,7 @@ The algorithms present an (incomplete) set of state-of-the-art face recognition
- algorithm : :py:class:`bob.bio.face.algorithm.GaborJet` - algorithm : :py:class:`bob.bio.face.algorithm.GaborJet`
* ``plda``: *Probabilistic LDA* (PLDA) [Pri07]_ is a probabilistic generative version of the LDA, in its scalable formulation of [ESM+13]_. * ``plda``: *Probabilistic LDA* (PLDA) [Pri07]_ is a probabilistic generative version of the LDA, in its scalable formulation of [ESM13]_.
Here, we also apply it on pixel-based representations of the image, though also other features should be possible. Here, we also apply it on pixel-based representations of the image, though also other features should be possible.
- preprocessor : :py:class:`bob.bio.face.preprocessor.FaceCrop` - preprocessor : :py:class:`bob.bio.face.preprocessor.FaceCrop`
...@@ -110,7 +110,7 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack ...@@ -110,7 +110,7 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack
- feature : :py:class:`bob.bio.face.extractor.DCTBlocks` - feature : :py:class:`bob.bio.face.extractor.DCTBlocks`
- algorithm : :py:class:`bob.bio.gmm.algorithm.GMM` - algorithm : :py:class:`bob.bio.gmm.algorithm.GMM`
* ``isv``: As an extension of the GMM algorithm, *Inter-Session Variability* (ISV) modeling [WMM+11]_ is used to learn what variations in images are introduced by identity changes and which not. * ``isv``: As an extension of the GMM algorithm, *Inter-Session Variability* (ISV) modeling [WMM11]_ is used to learn what variations in images are introduced by identity changes and which not.
- preprocessor : :py:class:`bob.bio.face.preprocessor.TanTriggs` - preprocessor : :py:class:`bob.bio.face.preprocessor.TanTriggs`
- feature : :py:class:`bob.bio.face.extractor.DCTBlocks` - feature : :py:class:`bob.bio.face.extractor.DCTBlocks`
...@@ -128,13 +128,13 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack ...@@ -128,13 +128,13 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack
Additionally, the following algorithms can be executed, when the :ref:`bob.bio.csu <bob.bio.csu>` package is installed. Additionally, the following algorithms can be executed, when the :ref:`bob.bio.csu <bob.bio.csu>` package is installed.
* ``lrpca``: In Local Region PCA [PBD+11]_, the face is sub-divided into local regions and a PCA is performed for each local region. * ``lrpca``: In Local Region PCA [PBD11]_, the face is sub-divided into local regions and a PCA is performed for each local region.
- preprocessor : :py:class:`bob.bio.csu.preprocessor.LRPCA` - preprocessor : :py:class:`bob.bio.csu.preprocessor.LRPCA`
- feature : :py:class:`bob.bio.csu.extractor.LRPCA` - feature : :py:class:`bob.bio.csu.extractor.LRPCA`
- algorithm : :py:class:`bob.bio.csu.algorithm.LRPCA` - algorithm : :py:class:`bob.bio.csu.algorithm.LRPCA`
* ``lda-ir``: The LDA-IR (a.k.a. CohortLDA [LBP+12]_) extracts color information from images after, and computes a PCA+LDA projection on two color layers. * ``lda-ir``: The LDA-IR (a.k.a. CohortLDA [LBP12]_) extracts color information from images after, and computes a PCA+LDA projection on two color layers.
- preprocessor : :py:class:`bob.bio.csu.preprocessor.LDAIR` - preprocessor : :py:class:`bob.bio.csu.preprocessor.LDAIR`
- feature : :py:class:`bob.bio.csu.extractor.LDAIR` - feature : :py:class:`bob.bio.csu.extractor.LDAIR`
......
...@@ -7,26 +7,22 @@ References ...@@ -7,26 +7,22 @@ References
========== ==========
.. [TP91] *M. Turk and A. Pentland*. **Eigenfaces for recognition**. Journal of Cognitive Neuroscience, 3(1):71-86, 1991. .. [TP91] *M. Turk and A. Pentland*. **Eigenfaces for recognition**. Journal of Cognitive Neuroscience, 3(1):71-86, 1991.
.. [ZKC+98] *W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets and J. Weng*. **Discriminant analysis of principal components for face recognition**, pages 73-85. Springer Verlag Berlin, 1998. .. [ZKC98] *W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets and J. Weng*. **Discriminant analysis of principal components for face recognition**, pages 73-85. Springer Verlag Berlin, 1998.
.. [MWP98] *B. Moghaddam, W. Wahid and A. Pentland*. **Beyond eigenfaces: probabilistic matching for face recognition**. IEEE International Conference on Automatic Face and Gesture Recognition, pages 30-35. 1998. .. [MWP98] *B. Moghaddam, W. Wahid and A. Pentland*. **Beyond eigenfaces: probabilistic matching for face recognition**. IEEE International Conference on Automatic Face and Gesture Recognition, pages 30-35. 1998.
.. [PBD+11] *P.J. Phillips, J.R. Beveridge, B.A. Draper, G. Givens, A.J. O'Toole, D.S. Bolme, J. Dunlop, Y.M. Lui, H. Sahibzada and S. Weimer*. **An introduction to the good, the bad, & the ugly face recognition challenge problem**. Automatic face gesture recognition and workshops (FG 2011), pages 346-353. 2011. .. [PBD11] *P.J. Phillips, J.R. Beveridge, B.A. Draper, G. Givens, A.J. O'Toole, D.S. Bolme, J. Dunlop, Y.M. Lui, H. Sahibzada and S. Weimer*. **An introduction to the good, the bad, & the ugly face recognition challenge problem**. Automatic face gesture recognition and workshops (FG 2011), pages 346-353. 2011.
.. [LBP+12] *Y.M. Lui, D. Bolme, P.J. Phillips, J.R. Beveridge and B.A. Draper*. **Preliminary studies on the good, the bad, and the ugly face recognition challenge problem**. Computer vision and pattern recognition workshops (CVPRW), pages 9-16. 2012. .. [LBP12] *Y.M. Lui, D. Bolme, P.J. Phillips, J.R. Beveridge and B.A. Draper*. **Preliminary studies on the good, the bad, and the ugly face recognition challenge problem**. Computer vision and pattern recognition workshops (CVPRW), pages 9-16. 2012.
.. [GHW12] *M. Günther, D. Haufe and R.P. Würtz*. **Face recognition with disparity corrected Gabor phase differences**. In Artificial neural networks and machine learning, volume 7552 of Lecture Notes in Computer Science, pages 411-418. 9/2012. .. [GHW12] *M. Günther, D. Haufe and R.P. Würtz*. **Face recognition with disparity corrected Gabor phase differences**. In Artificial neural networks and machine learning, volume 7552 of Lecture Notes in Computer Science, pages 411-418. 9/2012.
.. [ZSG+05] *W. Zhang, S. Shan, W. Gao, X. Chen and H. Zhang*. **Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition**. Computer Vision, IEEE International Conference on, 1:786-791, 2005. .. [ZSG05] *W. Zhang, S. Shan, W. Gao, X. Chen and H. Zhang*. **Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition**. Computer Vision, IEEE International Conference on, 1:786-791, 2005.
.. [MM09] *C. McCool, S. Marcel*. **Parts-based face verification using local frequency bands**. In Advances in biometrics, volume 5558 of Lecture Notes in Computer Science. 2009. .. [MM09] *C. McCool, S. Marcel*. **Parts-based face verification using local frequency bands**. In Advances in biometrics, volume 5558 of Lecture Notes in Computer Science. 2009.
.. [WMM+12] *R. Wallace, M. McLaren, C. McCool and S. Marcel*. **Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models**. IEEE Transactions on Information Forensics and Security, 2012. .. .. [WMM12] *R. Wallace, M. McLaren, C. McCool and S. Marcel*. **Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models**. IEEE Transactions on Information Forensics and Security, 2012.
.. [WMM+11] *R. Wallace, M. McLaren, C. McCool and S. Marcel*. **Inter-session variability modelling and joint factor analysis for face authentication**. International Joint Conference on Biometrics. 2011. .. [WMM11] *R. Wallace, M. McLaren, C. McCool and S. Marcel*. **Inter-session variability modelling and joint factor analysis for face authentication**. International Joint Conference on Biometrics. 2011.
.. [Pri07] *S. J. D. Prince*. **Probabilistic linear discriminant analysis for inferences about identity**. Proceedings of the International Conference on Computer Vision. 2007. .. [Pri07] *S. J. D. Prince*. **Probabilistic linear discriminant analysis for inferences about identity**. Proceedings of the International Conference on Computer Vision. 2007.
.. [ESM+13] *L. El Shafey, Chris McCool, Roy Wallace and Sébastien Marcel*. **A scalable formulation of probabilistic linear discriminant analysis: applied to face recognition**. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):1788-1794, 7/2013. .. [ESM13] *L. El Shafey, Chris McCool, Roy Wallace and Sébastien Marcel*. **A scalable formulation of probabilistic linear discriminant analysis: applied to face recognition**. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):1788-1794, 7/2013.
.. [WM12] *R. Wallace and M. McLaren*. **Total variability modelling for face verification**. IET Biometrics, vol.1, no.4, 188-199, 12/2012 .. [WM12] *R. Wallace and M. McLaren*. **Total variability modelling for face verification**. IET Biometrics, vol.1, no.4, 188-199, 12/2012
.. [TT10] *X. Tan and B. Triggs*. **Enhanced local texture feature sets for face recognition under difficult lighting conditions**. IEEE Transactions on Image Processing, 19(6):1635-1650, 2010. .. [TT10] *X. Tan and B. Triggs*. **Enhanced local texture feature sets for face recognition under difficult lighting conditions**. IEEE Transactions on Image Processing, 19(6):1635-1650, 2010.
.. [WLW04] *H. Wang, S.Z. Li and Y. Wang*. **Face recognition under varying lighting conditions using self quotient image**. In IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), pages 819-824. 2004. .. [WLW04] *H. Wang, S.Z. Li and Y. Wang*. **Face recognition under varying lighting conditions using self quotient image**. In IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), pages 819-824. 2004.
.. [HRM06] *G. Heusch, Y. Rodriguez, and S. Marcel*. **Local Binary Patterns as an Image Preprocessing for Face Authentication**. In IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), 2006. .. .. [HRM06] *G. Heusch, Y. Rodriguez, and S. Marcel*. **Local Binary Patterns as an Image Preprocessing for Face Authentication**. In IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), 2006.
.. [WFK97] *L. Wiskott, J.-M. Fellous, N. Krüger and C.v.d. Malsburg*. **Face recognition by elastic bunch graph matching**. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:775-779, 1997. .. [WFK97] *L. Wiskott, J.-M. Fellous, N. Krüger and C.v.d. Malsburg*. **Face recognition by elastic bunch graph matching**. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:775-779, 1997.
.. [ZSQ+09] *W. Zhang, S. Shan, L. Qing, X. Chen and W. Gao*. **Are Gabor phases really useless for face recognition?** Pattern Analysis & Applications, 12:301-307, 2009. .. [ZSQ09] *W. Zhang, S. Shan, L. Qing, X. Chen and W. Gao*. **Are Gabor phases really useless for face recognition?** Pattern Analysis & Applications, 12:301-307, 2009.
.. [GW09] *M. Günther and R.P. Würtz*. **Face detection and recognition using maximum likelihood classifiers on Gabor graphs**. International Journal of Pattern Recognition and Artificial Intelligence, 23(3):433-461, 2009. .. [GW09] *M. Günther and R.P. Würtz*. **Face detection and recognition using maximum likelihood classifiers on Gabor graphs**. International Journal of Pattern Recognition and Artificial Intelligence, 23(3):433-461, 2009.
.. .. [GWM12] *M. Günther, R. Wallace and S. Marcel*. **An Open Source Framework for Standardized Comparisons of Face Recognition Algorithms**. Computer Vision - ECCV 2012. Workshops and Demonstrations, LNCS, 7585, 547-556, 2012.
.. [GWM12] *M. Günther, R. Wallace and S. Marcel*. **An Open Source Framework for Standardized Comparisons of Face Recognition Algorithms**. Computer Vision - ECCV 2012. Workshops and Demonstrations, LNCS, 7585, 547-556, 2012.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment