Skip to content
Snippets Groups Projects
Commit b6353d5e authored by Yannick DAYER's avatar Yannick DAYER
Browse files

Set references in probes to prevent negative spoof

parent a9653ef6
No related branches found
No related tags found
1 merge request!106Vulnerability framework - CSV datasets
...@@ -54,35 +54,6 @@ def load_frame_from_file_replaymobile(file_name, frame, should_flip): ...@@ -54,35 +54,6 @@ def load_frame_from_file_replaymobile(file_name, frame, should_flip):
image = numpy.transpose(image, (0, 2, 1)) image = numpy.transpose(image, (0, 2, 1))
return image return image
def read_frame_annotation_file_replaymobile(file_name, frame, annotations_type="json"):
"""Returns the bounding-box for one frame of a video file of replay-mobile.
Given an annnotation file location and a frame number, returns the bounding
box coordinates corresponding to the frame.
The replay-mobile annotation files are composed of 4 columns and N rows for
N frames of the video:
120 230 40 40
125 230 40 40
...
<x> <y> <w> <h>
Parameters
----------
file_name: str
The annotation file name (relative to annotations_path).
frame: int
The video frame index.
"""
logger.debug(f"Reading annotation file '{file_name}', frame {frame}.")
video_annotations = read_annotation_file(file_name, annotation_type=annotations_type)
# read_annotation_file returns an ordered dict with string keys
return video_annotations[f"{frame}"]
class ReplayMobileCSVFrameSampleLoader(CSVToSampleLoaderBiometrics): class ReplayMobileCSVFrameSampleLoader(CSVToSampleLoaderBiometrics):
"""A loader transformer returning a specific frame of a video file. """A loader transformer returning a specific frame of a video file.
...@@ -101,39 +72,79 @@ class ReplayMobileCSVFrameSampleLoader(CSVToSampleLoaderBiometrics): ...@@ -101,39 +72,79 @@ class ReplayMobileCSVFrameSampleLoader(CSVToSampleLoaderBiometrics):
dataset_original_directory=dataset_original_directory, dataset_original_directory=dataset_original_directory,
) )
self.reference_id_equal_subject_id = reference_id_equal_subject_id self.reference_id_equal_subject_id = reference_id_equal_subject_id
self.references_list = []
def convert_row_to_sample(self, row, header): def convert_row_to_sample(self, row, header):
"""Creates a set of samples given a row of the CSV protocol definition. """Creates a set of samples given a row of the CSV protocol definition.
""" """
path = row[0] fields = dict([[str(h).lower(), r] for h, r in zip(header, row)])
reference_id = row[1]
id = row[2] # Will be used as 'key'
kwargs = dict([[str(h).lower(), r] for h, r in zip(header[3:], row[3:])])
if self.reference_id_equal_subject_id: if self.reference_id_equal_subject_id:
kwargs["subject_id"] = reference_id fields["subject_id"] = fields["reference_id"]
else: else:
if "subject_id" not in kwargs: if "subject_id" not in fields:
raise ValueError(f"`subject_id` not available in {header}") raise ValueError(f"`subject_id` not available in {header}")
if "should_flip" not in kwargs: if "should_flip" not in fields:
raise ValueError(f"`should_flip` not available in {header}") raise ValueError(f"`should_flip` not available in {header}")
if "purpose" not in fields:
raise ValueError(f"`purpose` not available in {header}")
kwargs = {k: fields[k] for k in fields.keys() - {"id",}}
# Retrieve the references list
if fields["purpose"].lower() == "enroll" and fields["reference_id"] not in self.references_list:
self.references_list.append(fields["reference_id"])
# Set the references list in the probes for vanilla-biometrics
if fields["purpose"].lower() != "enroll":
if fields["attack_type"]:
# Attacks only compare to the target (no `spoof_neg`)
kwargs["references"] = fields["reference_id"]
else:
kwargs["references"] = self.references_list
# One row leads to multiple samples (different frames) # One row leads to multiple samples (different frames)
all_samples = [DelayedSample( all_samples = [DelayedSample(
functools.partial( functools.partial(
load_frame_from_file_replaymobile, load_frame_from_file_replaymobile,
file_name=os.path.join(self.dataset_original_directory, path + self.extension), file_name=os.path.join(self.dataset_original_directory, fields["path"] + self.extension),
frame=frame, frame=frame,
should_flip=kwargs["should_flip"]=="TRUE", should_flip=kwargs["should_flip"]=="TRUE",
), ),
key=f"{id}_{frame}", key=f"{fields['id']}_{frame}",
path=path,
reference_id=reference_id,
frame=frame, frame=frame,
**kwargs, **kwargs,
) for frame in range(12,251,24)] ) for frame in range(12,251,24)]
return all_samples return all_samples
def read_frame_annotation_file_replaymobile(file_name, frame, annotations_type="json"):
"""Returns the bounding-box for one frame of a video file of replay-mobile.
Given an annnotation file location and a frame number, returns the bounding
box coordinates corresponding to the frame.
The replay-mobile annotation files are composed of 4 columns and N rows for
N frames of the video:
120 230 40 40
125 230 40 40
...
<x> <y> <w> <h>
Parameters
----------
file_name: str
The annotation file name (relative to annotations_path).
frame: int
The video frame index.
"""
logger.debug(f"Reading annotation file '{file_name}', frame {frame}.")
video_annotations = read_annotation_file(file_name, annotation_type=annotations_type)
# read_annotation_file returns an ordered dict with string keys
return video_annotations[f"{frame}"]
class FrameBoundingBoxAnnotationLoader(AnnotationsLoader): class FrameBoundingBoxAnnotationLoader(AnnotationsLoader):
"""A transformer that adds bounding-box to a sample from annotations files. """A transformer that adds bounding-box to a sample from annotations files.
...@@ -144,7 +155,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader): ...@@ -144,7 +155,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader):
""" """
def __init__(self, def __init__(self,
annotation_directory=None, annotation_directory=None,
annotation_extension=".face", annotation_extension=".json",
**kwargs **kwargs
): ):
super().__init__( super().__init__(
...@@ -161,12 +172,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader): ...@@ -161,12 +172,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader):
annotated_samples = [] annotated_samples = []
for x in X: for x in X:
# Adds the annotations as delayed_attributes, loading them when needed
# Build the path to the annotation files structure
annotation_file = os.path.join(
self.annotation_directory, x.path + self.annotation_extension
)
annotated_samples.append( annotated_samples.append(
DelayedSample( DelayedSample(
x._load, x._load,
...@@ -176,6 +182,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader): ...@@ -176,6 +182,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader):
read_frame_annotation_file_replaymobile, read_frame_annotation_file_replaymobile,
file_name=f"{self.annotation_directory}:{x.path}{self.annotation_extension}", file_name=f"{self.annotation_directory}:{x.path}{self.annotation_extension}",
frame=int(x.frame), frame=int(x.frame),
annotations_type=self.annotation_type,
) )
), ),
) )
...@@ -183,6 +190,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader): ...@@ -183,6 +190,7 @@ class FrameBoundingBoxAnnotationLoader(AnnotationsLoader):
return annotated_samples return annotated_samples
class ReplayMobileBioDatabase(CSVDataset): class ReplayMobileBioDatabase(CSVDataset):
"""Database interface that loads a csv definition for replay-mobile """Database interface that loads a csv definition for replay-mobile
...@@ -258,7 +266,8 @@ class ReplayMobileBioDatabase(CSVDataset): ...@@ -258,7 +266,8 @@ class ReplayMobileBioDatabase(CSVDataset):
annotation_extension=annotations_extension, annotation_extension=annotations_extension,
), ),
), ),
fetch_probes=False,
**kwargs **kwargs
) )
self.annotation_type = "bounding-box" self.annotation_type = "eyes-center"
self.fixed_positions = None self.fixed_positions = None
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment