Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.bio.face
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.bio.face
Commits
8a322bcc
Commit
8a322bcc
authored
4 years ago
by
Tiago de Freitas Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Improvements in the arcface trainer
parent
0e02e70f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!102
New baselines
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
cnn_training/arcface.py
+57
-27
57 additions, 27 deletions
cnn_training/arcface.py
with
57 additions
and
27 deletions
cnn_training/arcface.py
+
57
−
27
View file @
8a322bcc
...
@@ -52,11 +52,12 @@ validation-tf-record-path: "/path/lfw_pairs.tfrecord"
...
@@ -52,11 +52,12 @@ validation-tf-record-path: "/path/lfw_pairs.tfrecord"
Usage:
Usage:
arcface.py <config-yaml> <checkpoint_path>
arcface.py <config-yaml> <checkpoint_path>
[--pre-train]
arcface.py -h | --help
arcface.py -h | --help
Options:
Options:
-h --help Show this screen.
-h --help Show this screen.
--pre-train If set pretrains the CNN with the crossentropy softmax for 2 epochs
arcface.py arcface -h | help
arcface.py arcface -h | help
"""
"""
...
@@ -67,6 +68,7 @@ from functools import partial
...
@@ -67,6 +68,7 @@ from functools import partial
import
pkg_resources
import
pkg_resources
import
tensorflow
as
tf
import
tensorflow
as
tf
from
bob.learn.tensorflow.models.inception_resnet_v2
import
InceptionResNetV2
from
bob.learn.tensorflow.models.inception_resnet_v2
import
InceptionResNetV2
from
bob.learn.tensorflow.models
import
resnet50v1
from
bob.learn.tensorflow.metrics
import
predict_using_tensors
from
bob.learn.tensorflow.metrics
import
predict_using_tensors
from
tensorflow.keras
import
layers
from
tensorflow.keras
import
layers
from
bob.learn.tensorflow.callbacks
import
add_backup_callback
from
bob.learn.tensorflow.callbacks
import
add_backup_callback
...
@@ -99,6 +101,9 @@ BACKBONES["inception-resnet-v2"] = InceptionResNetV2
...
@@ -99,6 +101,9 @@ BACKBONES["inception-resnet-v2"] = InceptionResNetV2
BACKBONES
[
"
efficientnet-B0
"
]
=
tf
.
keras
.
applications
.
EfficientNetB0
BACKBONES
[
"
efficientnet-B0
"
]
=
tf
.
keras
.
applications
.
EfficientNetB0
BACKBONES
[
"
resnet50
"
]
=
tf
.
keras
.
applications
.
ResNet50
BACKBONES
[
"
resnet50
"
]
=
tf
.
keras
.
applications
.
ResNet50
BACKBONES
[
"
mobilenet-v2
"
]
=
tf
.
keras
.
applications
.
MobileNetV2
BACKBONES
[
"
mobilenet-v2
"
]
=
tf
.
keras
.
applications
.
MobileNetV2
# from bob.learn.tensorflow.models.lenet5 import LeNet5_simplified
BACKBONES
[
"
resnet50v1
"
]
=
resnet50v1
##############################
##############################
# SOLVER SPECIFICATIONS
# SOLVER SPECIFICATIONS
...
@@ -150,7 +155,7 @@ VALIDATION_BATCH_SIZE = 38
...
@@ -150,7 +155,7 @@ VALIDATION_BATCH_SIZE = 38
def
create_model
(
def
create_model
(
n_classes
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
n_classes
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
,
pre_train
):
):
if
backbone
==
"
inception-resnet-v2
"
:
if
backbone
==
"
inception-resnet-v2
"
:
...
@@ -166,20 +171,18 @@ def create_model(
...
@@ -166,20 +171,18 @@ def create_model(
pre_model
=
add_bottleneck
(
pre_model
=
add_bottleneck
(
pre_model
,
bottleneck_size
=
bottleneck
,
dropout_rate
=
dropout_rate
pre_model
,
bottleneck_size
=
bottleneck
,
dropout_rate
=
dropout_rate
)
)
pre_model
=
add_top
(
pre_model
,
n_classes
=
n_classes
)
float32_layer
=
layers
.
Activation
(
"
linear
"
,
dtype
=
"
float32
"
)
embeddings
=
pre_model
.
get_layer
(
"
embeddings
"
).
output
embeddings
=
tf
.
nn
.
l2_normalize
(
if
pre_train
:
pre_model
.
get_layer
(
"
embeddings/BatchNorm
"
).
output
,
axis
=
1
pre_model
=
add_top
(
pre_model
,
n_classes
=
n_classes
)
)
logits_premodel
=
float32_layer
(
pre_model
.
get_layer
(
"
logits
"
).
output
)
# Wrapping the embedding validation
logits_premodel
=
pre_model
.
get_layer
(
"
logits
"
).
output
# Wrapping the embedding validation
pre_model
=
EmbeddingValidation
(
pre_model
=
EmbeddingValidation
(
pre_model
.
input
,
outputs
=
[
logits_premodel
,
embeddings
],
name
=
pre_model
.
name
pre_model
.
input
,
outputs
=
[
logits_premodel
,
embeddings
],
name
=
pre_model
.
name
)
)
################################
################################
## Creating the specific models
## Creating the specific models
...
@@ -221,17 +224,34 @@ def create_model(
...
@@ -221,17 +224,34 @@ def create_model(
def
build_and_compile_models
(
def
build_and_compile_models
(
n_classes
,
optimizer
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
n_classes
,
optimizer
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
,
pre_train
,
):
):
pre_model
,
arc_model
=
create_model
(
pre_model
,
arc_model
=
create_model
(
n_classes
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
n_classes
,
model_spec
,
backbone
,
bottleneck
,
dropout_rate
,
input_shape
,
pre_train
,
)
)
cross_entropy
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
cross_entropy
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
,
name
=
"
cross_entropy
"
from_logits
=
True
,
name
=
"
cross_entropy
"
)
)
pre_model
.
compile
(
optimizer
=
optimizer
,
loss
=
cross_entropy
,
metrics
=
[
"
accuracy
"
])
# Compile the Cross-entropy model if the case
if
pre_train
:
pre_model
.
compile
(
optimizer
=
optimizer
,
loss
=
cross_entropy
,
metrics
=
[
"
accuracy
"
],
)
arc_model
.
compile
(
optimizer
=
optimizer
,
loss
=
cross_entropy
,
metrics
=
[
"
accuracy
"
])
arc_model
.
compile
(
optimizer
=
optimizer
,
loss
=
cross_entropy
,
metrics
=
[
"
accuracy
"
])
...
@@ -252,6 +272,7 @@ def train_and_evaluate(
...
@@ -252,6 +272,7 @@ def train_and_evaluate(
face_size
,
face_size
,
validation_path
,
validation_path
,
lerning_rate_schedule
,
lerning_rate_schedule
,
pre_train
=
False
,
):
):
# number of training steps to do before validating a model. This also defines an epoch
# number of training steps to do before validating a model. This also defines an epoch
...
@@ -300,6 +321,7 @@ def train_and_evaluate(
...
@@ -300,6 +321,7 @@ def train_and_evaluate(
bottleneck
=
bottleneck
,
bottleneck
=
bottleneck
,
dropout_rate
=
dropout_rate
,
dropout_rate
=
dropout_rate
,
input_shape
=
OUTPUT_SHAPE
+
(
3
,),
input_shape
=
OUTPUT_SHAPE
+
(
3
,),
pre_train
=
pre_train
,
)
)
def
scheduler
(
epoch
,
lr
):
def
scheduler
(
epoch
,
lr
):
...
@@ -312,8 +334,10 @@ def train_and_evaluate(
...
@@ -312,8 +334,10 @@ def train_and_evaluate(
if
epoch
in
range
(
200
):
if
epoch
in
range
(
200
):
return
1
*
lr
return
1
*
lr
elif
epoch
<
1000
:
return
lr
*
np
.
exp
(
-
0.005
)
else
:
else
:
return
lr
*
tf
.
math
.
exp
(
-
0.01
)
return
0.
00
01
if
lerning_rate_schedule
==
"
cosine-decay-restarts
"
:
if
lerning_rate_schedule
==
"
cosine-decay-restarts
"
:
decay_steps
=
50
decay_steps
=
50
...
@@ -339,16 +363,19 @@ def train_and_evaluate(
...
@@ -339,16 +363,19 @@ def train_and_evaluate(
}
}
callbacks
=
add_backup_callback
(
callbacks
,
backup_dir
=
f
"
{
checkpoint_path
}
/backup
"
)
callbacks
=
add_backup_callback
(
callbacks
,
backup_dir
=
f
"
{
checkpoint_path
}
/backup
"
)
# STEPS_PER_EPOCH
pre_model
.
fit
(
# Train the Cross-entropy model if the case
train_ds
,
if
pre_train
:
epochs
=
2
,
# STEPS_PER_EPOCH
validation_data
=
val_ds
,
pre_model
.
fit
(
steps_per_epoch
=
STEPS_PER_EPOCH
,
train_ds
,
validation_steps
=
VALIDATION_SAMPLES
//
VALIDATION_BATCH_SIZE
,
epochs
=
2
,
callbacks
=
callbacks
,
validation_data
=
val_ds
,
verbose
=
2
,
steps_per_epoch
=
STEPS_PER_EPOCH
,
)
validation_steps
=
VALIDATION_SAMPLES
//
VALIDATION_BATCH_SIZE
,
callbacks
=
callbacks
,
verbose
=
2
,
)
# STEPS_PER_EPOCH
# STEPS_PER_EPOCH
# epochs=epochs * KERAS_EPOCH_MULTIPLIER,
# epochs=epochs * KERAS_EPOCH_MULTIPLIER,
...
@@ -404,6 +431,9 @@ if __name__ == "__main__":
...
@@ -404,6 +431,9 @@ if __name__ == "__main__":
dropout_rate
=
float
(
config
[
"
dropout-rate
"
]),
dropout_rate
=
float
(
config
[
"
dropout-rate
"
]),
face_size
=
int
(
config
[
"
face-size
"
]),
face_size
=
int
(
config
[
"
face-size
"
]),
validation_path
=
config
[
"
validation-tf-record-path
"
],
validation_path
=
config
[
"
validation-tf-record-path
"
],
lerning_rate_schedule
=
config
[
"
lerning-rate-schedule
"
],
lerning_rate_schedule
=
config
[
"
lerning-rate-schedule
"
]
if
"
lerning-rate-schedule
"
in
config
else
None
,
pre_train
=
args
[
"
--pre-train
"
],
)
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment