Skip to content
Snippets Groups Projects
Commit 49f48337 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

Merge branch 'csu' into 'master'

Archiving csu issue #29

Closes #29

See merge request !48
parents 8868ffcc 04eeae4f
No related branches found
No related tags found
1 merge request!48Archiving csu issue #29
Pipeline #
...@@ -35,14 +35,6 @@ try: ...@@ -35,14 +35,6 @@ try:
except: except:
print("Could not load the GMM-based algorithms. Did you specify bob.bio.gmm in your config file?") print("Could not load the GMM-based algorithms. Did you specify bob.bio.gmm in your config file?")
try:
# try if the CSU extension is enabled
bob.bio.base.load_resource('lrpca', 'algorithm')
bob.bio.base.load_resource('lda-ir', 'algorithm')
all_algorithms += ['lrpca', 'lda-ir']
except:
print("Could not load the algorithms from the CSU resources. Did you specify bob.bio.csu in your config file?")
def command_line_arguments(command_line_parameters): def command_line_arguments(command_line_parameters):
"""Defines the command line parameters that are accepted.""" """Defines the command line parameters that are accepted."""
......
...@@ -125,25 +125,6 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack ...@@ -125,25 +125,6 @@ Further algorithms are available, when the :ref:`bob.bio.gmm <bob.bio.gmm>` pack
.. note:: .. note::
The ``ivector`` algorithm needs a lot of training data and fails on small databases such as the `AT&T database`_. The ``ivector`` algorithm needs a lot of training data and fails on small databases such as the `AT&T database`_.
Additionally, the following algorithms can be executed, when the :ref:`bob.bio.csu <bob.bio.csu>` package is installed.
* ``lrpca``: In Local Region PCA [PBD11]_, the face is sub-divided into local regions and a PCA is performed for each local region.
- preprocessor : :py:class:`bob.bio.csu.preprocessor.LRPCA`
- feature : :py:class:`bob.bio.csu.extractor.LRPCA`
- algorithm : :py:class:`bob.bio.csu.algorithm.LRPCA`
* ``lda-ir``: The LDA-IR (a.k.a. CohortLDA [LBP12]_) extracts color information from images after, and computes a PCA+LDA projection on two color layers.
- preprocessor : :py:class:`bob.bio.csu.preprocessor.LDAIR`
- feature : :py:class:`bob.bio.csu.extractor.LDAIR`
- algorithm : :py:class:`bob.bio.csu.algorithm.LDAIR`
.. note::
The ``lrpca`` and ``lda-ir`` algorithms require hand-labeled eye locations.
Therefore, they can not be run on the default ``atnt`` database.
.. _bob.bio.base.baseline_results: .. _bob.bio.base.baseline_results:
Baseline Results Baseline Results
......
...@@ -6,7 +6,6 @@ bob.ip.gabor ...@@ -6,7 +6,6 @@ bob.ip.gabor
bob.ip.base bob.ip.base
bob.bio.gmm bob.bio.gmm
bob.bio.video bob.bio.video
bob.bio.csu
bob.bio.spear bob.bio.spear
bob.db.lfw bob.db.lfw
bob.ip.facedetect bob.ip.facedetect
......
...@@ -21,7 +21,6 @@ Additionally, a set of baseline algorithms are defined, which integrate well wit ...@@ -21,7 +21,6 @@ Additionally, a set of baseline algorithms are defined, which integrate well wit
* :ref:`bob.bio.gmm <bob.bio.gmm>` defines algorithms based on Gaussian mixture models * :ref:`bob.bio.gmm <bob.bio.gmm>` defines algorithms based on Gaussian mixture models
* :ref:`bob.bio.video <bob.bio.video>` uses face recognition algorithms in video frames * :ref:`bob.bio.video <bob.bio.video>` uses face recognition algorithms in video frames
* :ref:`bob.bio.csu <bob.bio.csu>` provides wrapper classes of the `CSU Face Recognition Resources <http://www.cs.colostate.edu/facerec>`_ (only Python 2.7 compatible)
For more detailed information about the structure of the ``bob.bio`` packages, please refer to the documentation of :ref:`bob.bio.base <bob.bio.base>`. For more detailed information about the structure of the ``bob.bio`` packages, please refer to the documentation of :ref:`bob.bio.base <bob.bio.base>`.
Particularly, the installation of this and other ``bob.bio`` packages, please read the :ref:`bob.bio.base.installation`. Particularly, the installation of this and other ``bob.bio`` packages, please read the :ref:`bob.bio.base.installation`.
......
...@@ -14,7 +14,5 @@ ...@@ -14,7 +14,5 @@
.. _nist: http://www.nist.gov/itl/iad/ig/focs.cfm .. _nist: http://www.nist.gov/itl/iad/ig/focs.cfm
.. _pypi: http://pypi.python.org .. _pypi: http://pypi.python.org
.. _sge: http://wiki.idiap.ch/linux/SunGridEngine .. _sge: http://wiki.idiap.ch/linux/SunGridEngine
.. _csu face recognition resources: http://www.cs.colostate.edu/facerec
.. _xfacereclib.extension.csu: http://pypi.python.org/pypi/xfacereclib.extension.CSU
.. _virtualbox: https://www.virtualbox.org .. _virtualbox: https://www.virtualbox.org
.. _hdf5: http://www.hdfgroup.org/HDF5 .. _hdf5: http://www.hdfgroup.org/HDF5
...@@ -9,8 +9,6 @@ References ...@@ -9,8 +9,6 @@ References
.. [TP91] *M. Turk and A. Pentland*. **Eigenfaces for recognition**. Journal of Cognitive Neuroscience, 3(1):71-86, 1991. .. [TP91] *M. Turk and A. Pentland*. **Eigenfaces for recognition**. Journal of Cognitive Neuroscience, 3(1):71-86, 1991.
.. [ZKC98] *W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets and J. Weng*. **Discriminant analysis of principal components for face recognition**, pages 73-85. Springer Verlag Berlin, 1998. .. [ZKC98] *W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets and J. Weng*. **Discriminant analysis of principal components for face recognition**, pages 73-85. Springer Verlag Berlin, 1998.
.. [MWP98] *B. Moghaddam, W. Wahid and A. Pentland*. **Beyond eigenfaces: probabilistic matching for face recognition**. IEEE International Conference on Automatic Face and Gesture Recognition, pages 30-35. 1998. .. [MWP98] *B. Moghaddam, W. Wahid and A. Pentland*. **Beyond eigenfaces: probabilistic matching for face recognition**. IEEE International Conference on Automatic Face and Gesture Recognition, pages 30-35. 1998.
.. [PBD11] *P.J. Phillips, J.R. Beveridge, B.A. Draper, G. Givens, A.J. O'Toole, D.S. Bolme, J. Dunlop, Y.M. Lui, H. Sahibzada and S. Weimer*. **An introduction to the good, the bad, & the ugly face recognition challenge problem**. Automatic face gesture recognition and workshops (FG 2011), pages 346-353. 2011.
.. [LBP12] *Y.M. Lui, D. Bolme, P.J. Phillips, J.R. Beveridge and B.A. Draper*. **Preliminary studies on the good, the bad, and the ugly face recognition challenge problem**. Computer vision and pattern recognition workshops (CVPRW), pages 9-16. 2012.
.. [GHW12] *M. Günther, D. Haufe and R.P. Würtz*. **Face recognition with disparity corrected Gabor phase differences**. In Artificial neural networks and machine learning, volume 7552 of Lecture Notes in Computer Science, pages 411-418. 9/2012. .. [GHW12] *M. Günther, D. Haufe and R.P. Würtz*. **Face recognition with disparity corrected Gabor phase differences**. In Artificial neural networks and machine learning, volume 7552 of Lecture Notes in Computer Science, pages 411-418. 9/2012.
.. [ZSG05] *W. Zhang, S. Shan, W. Gao, X. Chen and H. Zhang*. **Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition**. Computer Vision, IEEE International Conference on, 1:786-791, 2005. .. [ZSG05] *W. Zhang, S. Shan, W. Gao, X. Chen and H. Zhang*. **Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition**. Computer Vision, IEEE International Conference on, 1:786-791, 2005.
.. [MM09] *C. McCool, S. Marcel*. **Parts-based face verification using local frequency bands**. In Advances in biometrics, volume 5558 of Lecture Notes in Computer Science. 2009. .. [MM09] *C. McCool, S. Marcel*. **Parts-based face verification using local frequency bands**. In Advances in biometrics, volume 5558 of Lecture Notes in Computer Science. 2009.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment