Skip to content
Snippets Groups Projects
Commit 12ad27fe authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

Implemented test case for InceptionResnetV2

parent e827156f
No related branches found
No related tags found
1 merge request!64Dask pipelines
Pipeline #42633 failed
File added
import bob.bio.face import bob.bio.face
import bob.io.base
import numpy as np import numpy as np
from bob.pipelines import Sample, wrap from bob.pipelines import Sample, wrap
import pkg_resources
def test_facenet(): def test_facenet():
from bob.bio.face.embeddings import FaceNetSanderberg from bob.bio.face.embeddings import FaceNetSanderberg
np.random.seed(10) np.random.seed(10)
transformer = FaceNetSanderberg() transformer = FaceNetSanderberg()
# Raw data # Raw data
data = np.random.rand(3, 160, 160).astype("uint8") data = np.random.rand(3, 160, 160).astype("uint8")
output = transformer.transform(data) output = transformer.transform(data)
assert output.size == 128, output.shape assert output.size == 128, output.shape
# Sample Batch # Sample Batch
sample = Sample(data) sample = Sample(data)
...@@ -25,9 +27,15 @@ def test_facenet(): ...@@ -25,9 +27,15 @@ def test_facenet():
def test_idiap_inceptionv2_msceleb(): def test_idiap_inceptionv2_msceleb():
from bob.bio.face.embeddings import InceptionResnetv2_MsCeleb from bob.bio.face.embeddings import InceptionResnetv2_MsCeleb
reference = bob.io.base.load(
pkg_resources.resource_filename(
"bob.bio.face.test", "data/inception_resnet_v2_rgb.hdf5"
)
)
np.random.seed(10) np.random.seed(10)
transformer = InceptionResnetv2_MsCeleb() transformer = InceptionResnetv2_MsCeleb()
data = np.random.rand(3, 160, 160).astype("uint8") data = (np.random.rand(3, 160, 160) * 255).astype("uint8")
output = transformer.transform(data) output = transformer.transform(data)
assert output.size == 128, output.shape assert output.size == 128, output.shape
...@@ -36,6 +44,7 @@ def test_idiap_inceptionv2_msceleb(): ...@@ -36,6 +44,7 @@ def test_idiap_inceptionv2_msceleb():
transformer_sample = wrap(["sample"], transformer) transformer_sample = wrap(["sample"], transformer)
output = [s.data for s in transformer_sample.transform([sample])][0] output = [s.data for s in transformer_sample.transform([sample])][0]
assert np.allclose(output, reference)
assert output.size == 128, output.shape assert output.size == 128, output.shape
...@@ -48,7 +57,6 @@ def test_idiap_inceptionv2_casia(): ...@@ -48,7 +57,6 @@ def test_idiap_inceptionv2_casia():
output = transformer.transform(data) output = transformer.transform(data)
assert output.size == 128, output.shape assert output.size == 128, output.shape
# Sample Batch # Sample Batch
sample = Sample(data) sample = Sample(data)
transformer_sample = wrap(["sample"], transformer) transformer_sample = wrap(["sample"], transformer)
...@@ -93,6 +101,7 @@ def test_idiap_inceptionv1_casia(): ...@@ -93,6 +101,7 @@ def test_idiap_inceptionv1_casia():
def test_arface_insight_tf(): def test_arface_insight_tf():
import tensorflow as tf import tensorflow as tf
tf.compat.v1.reset_default_graph() tf.compat.v1.reset_default_graph()
from bob.bio.face.embeddings import ArcFace_InsightFaceTF from bob.bio.face.embeddings import ArcFace_InsightFaceTF
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment