Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.bio.base
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.bio.base
Commits
3dd4cf39
Commit
3dd4cf39
authored
4 years ago
by
Tiago de Freitas Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Fixed major issue with the ZTNorm checkpointing
parent
8773ff98
No related branches found
No related tags found
1 merge request
!180
[dask] Preparing bob.bio.base for dask pipelines
Pipeline
#40633
passed
4 years ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/bio/base/pipelines/vanilla_biometrics/zt_norm.py
+104
-46
104 additions, 46 deletions
bob/bio/base/pipelines/vanilla_biometrics/zt_norm.py
with
104 additions
and
46 deletions
bob/bio/base/pipelines/vanilla_biometrics/zt_norm.py
+
104
−
46
View file @
3dd4cf39
...
...
@@ -235,6 +235,7 @@ class ZTNormPipeline(object):
allow_scoring_with_all_biometric_references
=
False
,
):
# Reusing the zprobe_features and t_biometric_references
zt_scores
=
self
.
vanilla_biometrics_pipeline
.
biometric_algorithm
.
score_samples
(
z_probe_features
,
...
...
@@ -242,17 +243,7 @@ class ZTNormPipeline(object):
allow_scoring_with_all_biometric_references
=
allow_scoring_with_all_biometric_references
,
)
# Z Normalizing the T-normed scores
z_normed_t_normed
=
self
.
ztnorm_solver
.
compute_znorm_scores
(
t_scores
,
zt_scores
,
t_biometric_references
,
)
# (Z Normalizing the T-normed scores) the Z normed scores
zt_normed_scores
=
self
.
ztnorm_solver
.
compute_tnorm_scores
(
z_normed_scores
,
z_normed_t_normed
,
t_biometric_references
,
)
return
zt_normed_scores
return
self
.
ztnorm_solver
.
compute_ztnorm_score
(
t_scores
,
zt_scores
,
t_biometric_references
,
z_normed_scores
)
def
compute_snorm_scores
(
self
,
znormed_scores
,
tnormed_scores
):
...
...
@@ -388,7 +379,7 @@ class ZTNorm(object):
return
stats
def
_znorm_samplesets
(
self
,
probe_scores
,
stats
):
def
_znorm_samplesets
(
self
,
probe_scores
,
stats
,
for_zt
=
False
):
# Normalizing
# TODO: THIS TENDS TO BE EXTREMLY SLOW
z_normed_score_samples
=
[]
...
...
@@ -409,7 +400,7 @@ class ZTNorm(object):
z_normed_score
.
samples
.
append
(
new_sample
)
return
z_normed_score
def
_tnorm_samplesets
(
self
,
probe_scores
,
stats
):
def
_tnorm_samplesets
(
self
,
probe_scores
,
stats
,
for_zt
=
False
):
# Normalizing
# TODO: THIS TENDS TO BE EXTREMLY SLOW
# MAYBE THIS COULD BE DELAYED OR RUN ON TOP OF
...
...
@@ -463,6 +454,22 @@ class ZTNorm(object):
return
self
.
_tnorm_samplesets
(
probe_scores
,
stats
)
def
compute_ztnorm_score
(
self
,
t_scores
,
zt_scores
,
t_biometric_references
,
z_normed_scores
):
# Z Normalizing the T-normed scores
z_normed_t_normed
=
self
.
compute_znorm_scores
(
t_scores
,
zt_scores
,
t_biometric_references
,
)
# (Z Normalizing the T-normed scores) the Z normed scores
zt_normed_scores
=
self
.
compute_tnorm_scores
(
z_normed_scores
,
z_normed_t_normed
,
t_biometric_references
,
)
return
zt_normed_scores
def
_snorm
(
self
,
z_score
,
t_score
):
return
0.5
*
(
z_score
+
t_score
)
...
...
@@ -500,7 +507,7 @@ class ZTNormDaskWrapper(object):
self
.
ztnorm
=
ztnorm
def
compute_znorm_scores
(
self
,
probe_scores
,
sampleset_for_znorm
,
biometric_references
self
,
probe_scores
,
sampleset_for_znorm
,
biometric_references
,
for_zt
=
False
):
# Reducing all the Z-Scores to compute the stats
...
...
@@ -510,10 +517,10 @@ class ZTNormDaskWrapper(object):
all_scores_for_znorm
,
biometric_references
,
axis
=
0
)
return
probe_scores
.
map_partitions
(
self
.
ztnorm
.
_znorm_samplesets
,
stats
)
return
probe_scores
.
map_partitions
(
self
.
ztnorm
.
_znorm_samplesets
,
stats
,
for_zt
)
def
compute_tnorm_scores
(
self
,
probe_scores
,
sampleset_for_tnorm
,
t_biometric_references
self
,
probe_scores
,
sampleset_for_tnorm
,
t_biometric_references
,
for_zt
=
False
):
# Reducing all the Z-Scores to compute the stats
...
...
@@ -523,7 +530,23 @@ class ZTNormDaskWrapper(object):
all_scores_for_tnorm
,
t_biometric_references
,
axis
=
1
)
return
probe_scores
.
map_partitions
(
self
.
ztnorm
.
_tnorm_samplesets
,
stats
)
return
probe_scores
.
map_partitions
(
self
.
ztnorm
.
_tnorm_samplesets
,
stats
,
for_zt
)
def
compute_ztnorm_score
(
self
,
t_scores
,
zt_scores
,
t_biometric_references
,
z_normed_scores
):
# Z Normalizing the T-normed scores
z_normed_t_normed
=
self
.
compute_znorm_scores
(
t_scores
,
zt_scores
,
t_biometric_references
,
for_zt
=
True
)
# (Z Normalizing the T-normed scores) the Z normed scores
zt_normed_scores
=
self
.
compute_tnorm_scores
(
z_normed_scores
,
z_normed_t_normed
,
t_biometric_references
,
for_zt
=
True
)
return
zt_normed_scores
def
compute_snorm_scores
(
self
,
znormed_scores
,
tnormed_scores
):
return
znormed_scores
.
map_partitions
(
...
...
@@ -550,31 +573,39 @@ class ZTNormCheckpointWrapper(object):
self
.
ztnorm
=
ztnorm
self
.
znorm_score_path
=
os
.
path
.
join
(
base_dir
,
"
znorm_scores
"
)
self
.
tnorm_score_path
=
os
.
path
.
join
(
base_dir
,
"
tnorm_scores
"
)
self
.
ztnorm_score_path
=
os
.
path
.
join
(
base_dir
,
"
ztnorm_scores
"
)
self
.
snorm_score_path
=
os
.
path
.
join
(
base_dir
,
"
snorm_scores
"
)
self
.
force
=
force
self
.
base_dir
=
base_dir
def
_
write_scores
(
self
,
samples
,
path
):
def
write_scores
(
self
,
samples
,
path
):
os
.
makedirs
(
os
.
path
.
dirname
(
path
),
exist_ok
=
True
)
open
(
path
,
"
wb
"
).
write
(
cloudpickle
.
dumps
(
samples
))
def
_load
(
self
,
path
):
return
cloudpickle
.
loads
(
open
(
path
,
"
rb
"
).
read
())
def
_apply_znorm
(
self
,
probe_score
,
stats
):
path
=
os
.
path
.
join
(
self
.
znorm_score_path
,
str
(
probe_score
.
key
)
+
"
.pkl
"
)
def
_make_name
(
self
,
sampleset
,
biometric_references
,
for_zt
=
False
):
# The score file name is composed by sampleset key and the
# first 3 biometric_references
subject
=
str
(
sampleset
.
subject
)
name
=
str
(
sampleset
.
key
)
suffix
=
"
_
"
.
join
([
s
for
s
in
biometric_references
[
0
:
5
]])
suffix
+=
"
_zt_norm
"
if
for_zt
else
""
return
os
.
path
.
join
(
subject
,
name
+
suffix
)
def
_apply_znorm
(
self
,
probe_score
,
stats
,
for_zt
=
False
):
path
=
os
.
path
.
join
(
self
.
znorm_score_path
,
self
.
_make_name
(
probe_score
,
probe_score
.
references
,
for_zt
)
+
"
.pkl
"
)
if
self
.
force
or
not
os
.
path
.
exists
(
path
):
z_normed_score
=
self
.
ztnorm
.
_apply_znorm
(
probe_score
,
p
at
h
)
z_normed_score
=
self
.
ztnorm
.
_apply_znorm
(
probe_score
,
st
at
s
)
self
.
write_scores
(
z_normed_score
.
samples
)
self
.
write_scores
(
z_normed_score
.
samples
,
path
)
z_normed_score
=
SampleSet
(
[
DelayedSample
(
functools
.
partial
(
self
.
_load
,
path
),
parent
=
probe_score
)
],
),
parent
=
probe_score
,
)
else
:
...
...
@@ -582,21 +613,18 @@ class ZTNormCheckpointWrapper(object):
return
z_normed_score
def
_apply_tnorm
(
self
,
probe_score
,
stats
):
path
=
os
.
path
.
join
(
self
.
tnorm_score_path
,
str
(
probe_score
.
key
)
+
"
.pkl
"
)
def
_apply_tnorm
(
self
,
probe_score
,
stats
,
for_zt
=
False
):
path
=
os
.
path
.
join
(
self
.
tnorm_score_path
,
self
.
_make_name
(
probe_score
,
probe_score
.
references
,
for_zt
)
+
"
.pkl
"
)
if
self
.
force
or
not
os
.
path
.
exists
(
path
):
t_normed_score
=
self
.
ztnorm
.
_apply_tnorm
(
probe_score
,
p
at
h
)
t_normed_score
=
self
.
ztnorm
.
_apply_tnorm
(
probe_score
,
st
at
s
)
self
.
write_scores
(
t_normed_score
.
samples
)
self
.
write_scores
(
t_normed_score
.
samples
,
path
)
t_normed_score
=
SampleSet
(
[
DelayedSample
(
functools
.
partial
(
self
.
_load
,
path
),
parent
=
probe_score
)
],
),
parent
=
probe_score
,
)
else
:
...
...
@@ -605,20 +633,38 @@ class ZTNormCheckpointWrapper(object):
return
t_normed_score
def
compute_znorm_scores
(
self
,
probe_scores
,
sampleset_for_znorm
,
biometric_references
self
,
probe_scores
,
sampleset_for_znorm
,
biometric_references
,
for_zt
=
False
):
#return self.ztnorm.compute_znorm_scores(probe_scores, sampleset_for_znorm, biometric_references)
stats
=
self
.
_compute_stats
(
sampleset_for_znorm
,
biometric_references
,
axis
=
0
)
return
self
.
_znorm_samplesets
(
probe_scores
,
stats
,
for_zt
)
return
self
.
ztnorm
.
compute_znorm_scores
(
probe_scores
,
sampleset_for_znorm
,
biometric_references
)
def
compute_tnorm_scores
(
self
,
probe_scores
,
sampleset_for_tnorm
,
t_biometric_references
self
,
probe_scores
,
sampleset_for_tnorm
,
t_biometric_references
,
for_zt
=
False
):
return
self
.
ztnorm
.
compute_tnorm_scores
(
probe_scores
,
sampleset_for_tnorm
,
t_biometric_references
#return self.ztnorm.compute_tnorm_scores(probe_scores, sampleset_for_tnorm, t_biometric_references)
stats
=
self
.
_compute_stats
(
sampleset_for_tnorm
,
t_biometric_references
,
axis
=
1
)
return
self
.
_tnorm_samplesets
(
probe_scores
,
stats
,
for_zt
)
def
compute_ztnorm_score
(
self
,
t_scores
,
zt_scores
,
t_biometric_references
,
z_normed_scores
):
# Z Normalizing the T-normed scores
z_normed_t_normed
=
self
.
compute_znorm_scores
(
t_scores
,
zt_scores
,
t_biometric_references
,
for_zt
=
True
)
# (Z Normalizing the T-normed scores) the Z normed scores
zt_normed_scores
=
self
.
compute_tnorm_scores
(
z_normed_scores
,
z_normed_t_normed
,
t_biometric_references
,
for_zt
=
True
)
return
zt_normed_scores
def
compute_snorm_scores
(
self
,
znormed_scores
,
tnormed_scores
):
return
self
.
ztnorm
.
compute_snorm_scores
(
znormed_scores
,
tnormed_scores
)
...
...
@@ -627,11 +673,23 @@ class ZTNormCheckpointWrapper(object):
sampleset_for_norm
,
biometric_references
,
axis
=
axis
)
def
_znorm_samplesets
(
self
,
probe_scores
,
stats
):
return
self
.
ztnorm
.
_znorm_samplesets
(
probe_scores
,
stats
)
def
_znorm_samplesets
(
self
,
probe_scores
,
stats
,
for_zt
=
False
):
z_normed_score_samples
=
[]
for
probe_score
in
probe_scores
:
z_normed_score_samples
.
append
(
self
.
_apply_znorm
(
probe_score
,
stats
,
for_zt
=
for_zt
))
return
z_normed_score_samples
#return self.ztnorm._znorm_samplesets(probe_scores, stats)
def
_tnorm_samplesets
(
self
,
probe_scores
,
stats
,
for_zt
=
False
):
t_normed_score_samples
=
[]
for
probe_score
in
probe_scores
:
t_normed_score_samples
.
append
(
self
.
_apply_tnorm
(
probe_score
,
stats
,
for_zt
=
for_zt
))
return
t_normed_score_samples
def
_tnorm_samplesets
(
self
,
probe_scores
,
stats
):
return
self
.
ztnorm
.
_tnorm_samplesets
(
probe_scores
,
stats
)
#return self.ztnorm._tnorm_samplesets(probe_scores, stats)
def
_snorm_samplesets
(
self
,
probe_scores
,
stats
):
return
self
.
ztnorm
.
_snorm_samplesets
(
probe_scores
,
stats
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment