Skip to content
Snippets Groups Projects
Commit 30be4ee2 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira Committed by Amir MOHAMMADI
Browse files

Reorganized the examples

parent 2231a692
No related branches found
No related tags found
1 merge request!180[dask] Preparing bob.bio.base for dask pipelines
# from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, AlgorithmAdaptor
import bob.db.atnt
import bob.bio.base
import bob.bio.face
## DATABASE
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
database = DatabaseConnector(bob.bio.face.database.AtntBioDatabase(original_directory="./atnt"), protocol="Default")
database = DatabaseConnector(bob.db.atnt.Database(), protocol="Default")
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.decomposition import PCA
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from bob.bio.base.mixins import CheckpointSampleLinearize
from bob.bio.base.mixins.legacy import LegacyProcessorMixin, LegacyAlgorithmMixin
class CheckpointSamplePCA(CheckpointMixin, SampleMixin, PCA):
"""
Enables SAMPLE and CHECKPOINTIN handling for https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
"""
pass
from bob.bio.base.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
#### PREPROCESSOR LEGACY ###
......@@ -68,7 +62,7 @@ extractor = Pipeline(
]
)
extractor = dask_it(extractor)
#extractor = dask_it(extractor)
from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import (
Distance,
......
# from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, AlgorithmAdaptor
import bob.db.atnt
import bob.bio.base
import bob.bio.face
## DATABASE
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
database = DatabaseConnector(bob.bio.face.database.AtntBioDatabase(original_directory="./atnt"), protocol="Default")
database = DatabaseConnector(bob.db.atnt.Database(), protocol="Default")
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.decomposition import PCA
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from bob.bio.base.mixins import CheckpointSampleLinearize
from bob.bio.base.mixins.legacy import LegacyProcessorMixin, LegacyAlgorithmMixin
from bob.bio.base.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
from bob.bio.base.pipelines.vanilla_biometrics.legacy import LegacyBiometricAlgorithm
class CheckpointSamplePCA(CheckpointMixin, SampleMixin, PCA):
"""
Enables SAMPLE and CHECKPOINTIN handling for https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
"""
pass
#### PREPROCESSOR LEGACY ###
import functools
......
#from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, AlgorithmAdaptor
import bob.db.atnt
import bob.bio.face
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
database = DatabaseConnector(bob.db.atnt.Database(), protocol="Default")
database = DatabaseConnector(bob.bio.face.database.AtntBioDatabase(original_directory="./atnt"), protocol="Default")
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.decomposition import PCA
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from bob.bio.base.mixins import CheckpointSampleLinearize
from bob.bio.base.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
class CheckpointSamplePCA(CheckpointMixin, SampleMixin, PCA):
"""
Enables SAMPLE and CHECKPOINTIN handling for https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
"""
pass
#extractor = make_pipeline([CheckpointSampleLinearize(), CheckpointSamplePCA()])
from bob.pipelines.mixins import dask_it
extractor = Pipeline(steps=[('0',CheckpointSampleLinearize(features_dir="./example/extractor0")),
('1',CheckpointSamplePCA(features_dir="./example/extractor1", model_path="./example/pca.pkl"))])
......
# from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, AlgorithmAdaptor
import bob.db.atnt
### DATABASE
import bob.bio.face
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
database = DatabaseConnector(bob.bio.face.database.AtntBioDatabase(original_directory="./atnt"), protocol="Default")
database = DatabaseConnector(bob.db.atnt.Database(), protocol="Default")
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.decomposition import PCA
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from bob.bio.base.mixins import CheckpointSampleLinearize
from bob.bio.base.mixins.legacy import LegacyProcessorMixin
class CheckpointSamplePCA(CheckpointMixin, SampleMixin, PCA):
"""
Enables SAMPLE and CHECKPOINTIN handling for https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
"""
pass
from bob.bio.base.mixins.legacy import LegacyProcessorMixin, LegacyAlgorithmMixin
from bob.bio.base.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
#### PREPROCESSOR LEGACY ###
......@@ -48,7 +40,6 @@ face_cropper = functools.partial(
from bob.pipelines.mixins import mix_me_up
preprocessor = mix_me_up((CheckpointMixin, SampleMixin), LegacyProcessorMixin)
from bob.pipelines.mixins import dask_it
......@@ -75,7 +66,5 @@ from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import (
class CheckpointDistance(BiometricAlgorithmCheckpointMixin, Distance):
pass
algorithm = CheckpointDistance(features_dir="./example/")
# algorithm = Distance()
......@@ -7,12 +7,15 @@ import bob.bio.face
from bob.bio.base.mixins.legacy import LegacyProcessorMixin, LegacyAlgorithmMixin
from bob.bio.base.pipelines.vanilla_biometrics.legacy import LegacyBiometricAlgorithm
from bob.bio.base.transformers import CheckpointSamplePCA
import os
base_dir = "/idiap/temp/tpereira/mobio/pca"
#base_dir = "./example"
#base_dir = "/idiap/temp/tpereira/mobio/pca"
base_dir = "./example"
### DATABASE
original_directory=rc['bob.db.mobio.directory']
annotation_directory=rc['bob.db.mobio.annotation_directory']
database = DatabaseConnectorAnnotated(bob.bio.face.database.mobio.MobioBioDatabase(
......@@ -26,13 +29,8 @@ from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.decomposition import PCA
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from bob.bio.base.mixins import CheckpointSampleLinearize
from bob.bio.base.transformers import CheckpointSampleLinearize
class CheckpointSamplePCA(CheckpointMixin, SampleMixin, PCA):
"""
Enables SAMPLE and CHECKPOINTIN handling for https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
"""
pass
......@@ -63,10 +61,9 @@ extractor = Pipeline(steps=[
('1',CheckpointSampleLinearize(features_dir=os.path.join(base_dir,"extractor1"))),
('2',CheckpointSamplePCA(features_dir=os.path.join(base_dir,"extractor2"), model_path=os.path.join(base_dir,"pca.pkl")))
])
extractor = dask_it(extractor, npartitions=48)
#extractor = dask_it(extractor, npartitions=48)
from bob.bio.base.pipelines.vanilla_biometrics.biometric_algorithm import Distance, BiometricAlgorithmCheckpointMixin
class CheckpointDistance(BiometricAlgorithmCheckpointMixin, Distance): pass
algorithm = CheckpointDistance(features_dir=base_dir)
#algorithm = Distance()
......@@ -135,7 +135,6 @@ class BiometricAlgorithm(object):
for subprobe_id, (s, parent) in enumerate(zip(data, sampleset.samples)):
# Creating one sample per comparison
subprobe_scores = []
for ref in [
r for r in biometric_references if r.key in sampleset.references
]:
......
......@@ -186,7 +186,7 @@ class DatabaseConnector:
references=[str(m)],
)
else:
probes[o.id].references.append(m)
probes[o.id].references.append(str(m))
return list(probes.values())
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment