Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mednet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
medai
software
mednet
Commits
e1215e99
Commit
e1215e99
authored
1 year ago
by
Daniel CARRON
Browse files
Options
Downloads
Patches
Plain Diff
Removed unused functions
parent
b42b73d7
No related branches found
No related tags found
1 merge request
!4
Moved code to lightning
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/ptbench/engine/trainer.py
+0
-422
0 additions, 422 deletions
src/ptbench/engine/trainer.py
with
0 additions
and
422 deletions
src/ptbench/engine/trainer.py
+
0
−
422
View file @
e1215e99
...
...
@@ -2,22 +2,15 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
import
contextlib
import
csv
import
datetime
import
logging
import
os
import
shutil
import
sys
import
numpy
import
torch
from
pytorch_lightning
import
Trainer
from
pytorch_lightning.callbacks
import
ModelCheckpoint
from
pytorch_lightning.loggers
import
CSVLogger
,
TensorBoardLogger
from
pytorch_lightning.utilities.model_summary
import
ModelSummary
from
tqdm
import
tqdm
from
..utils.resources
import
ResourceMonitor
,
cpu_constants
,
gpu_constants
from
.callbacks
import
LoggingCallback
...
...
@@ -25,32 +18,6 @@ from .callbacks import LoggingCallback
logger
=
logging
.
getLogger
(
__name__
)
@contextlib.contextmanager
def
torch_evaluation
(
model
):
"""
Context manager to turn ON/OFF model evaluation.
This context manager will turn evaluation mode ON on entry and turn it OFF
when exiting the ``with`` statement block.
Parameters
----------
model : :py:class:`torch.nn.Module`
Network
Yields
------
model : :py:class:`torch.nn.Module`
Network
"""
model
.
eval
()
yield
model
model
.
train
()
def
check_gpu
(
device
):
"""
Check the device type and the availability of GPU.
...
...
@@ -67,45 +34,6 @@ def check_gpu(device):
),
f
"
Device set to
'
{
device
}
'
, but nvidia-smi is not installed
"
def
initialize_lowest_validation_loss
(
logfile_name
,
arguments
):
"""
Initialize the lowest validation loss from the logfile if it exists and
if the training does not start from epoch 0, which means that a previous
training session is resumed.
Parameters
----------
logfile_name : str
The logfile_name which is a join between the output_folder and trainlog.csv
arguments : dict
start and end epochs
"""
if
arguments
[
"
epoch
"
]
!=
0
and
os
.
path
.
exists
(
logfile_name
):
# Open the CSV file
with
open
(
logfile_name
)
as
file
:
reader
=
csv
.
DictReader
(
file
)
column_name
=
"
validation_loss
"
if
column_name
not
in
reader
.
fieldnames
:
return
sys
.
float_info
.
max
# Get the values of the desired column as a list
values
=
[
float
(
row
[
column_name
])
for
row
in
reader
]
if
not
values
:
return
sys
.
float_info
.
max
lowest_value
=
min
(
values
)
logger
.
info
(
f
"
Found lowest validation loss from previous session:
{
lowest_value
}
"
)
return
lowest_value
return
sys
.
float_info
.
max
def
save_model_summary
(
output_folder
,
model
):
"""
Save a little summary of the model in a txt file.
...
...
@@ -220,236 +148,6 @@ def create_logfile_fields(valid_loader, extra_valid_loaders, device):
return
logfile_fields
def
train_epoch
(
loader
,
model
,
optimizer
,
device
,
criterion
,
batch_chunk_count
):
"""
Trains the model for a single epoch (through all batches)
Parameters
----------
loader : :py:class:`torch.utils.data.DataLoader`
To be used to train the model
model : :py:class:`torch.nn.Module`
Network (e.g. driu, hed, unet)
optimizer : :py:mod:`torch.optim`
device : :py:class:`torch.device`
device to use
criterion : :py:class:`torch.nn.modules.loss._Loss`
batch_chunk_count: int
If this number is different than 1, then each batch will be divided in
this number of chunks. Gradients will be accumulated to perform each
mini-batch. This is particularly interesting when one has limited RAM
on the GPU, but would like to keep training with larger batches. One
exchanges for longer processing times in this case. To better understand
gradient accumulation, read
https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch.
Returns
-------
loss : float
A floating-point value corresponding the weighted average of this
epoch
'
s loss
"""
losses_in_epoch
=
[]
samples_in_epoch
=
[]
losses_in_batch
=
[]
samples_in_batch
=
[]
# progress bar only on interactive jobs
for
idx
,
samples
in
enumerate
(
tqdm
(
loader
,
desc
=
"
train
"
,
leave
=
False
,
disable
=
None
)
):
images
=
samples
[
1
].
to
(
device
=
device
,
non_blocking
=
torch
.
cuda
.
is_available
()
)
labels
=
samples
[
2
].
to
(
device
=
device
,
non_blocking
=
torch
.
cuda
.
is_available
()
)
# Increase label dimension if too low
# Allows single and multiclass usage
if
labels
.
ndim
==
1
:
labels
=
torch
.
reshape
(
labels
,
(
labels
.
shape
[
0
],
1
))
# Forward pass on the network
outputs
=
model
(
images
)
loss
=
criterion
(
outputs
,
labels
.
double
())
losses_in_batch
.
append
(
loss
.
item
())
samples_in_batch
.
append
(
len
(
samples
))
# Normalize loss to account for batch accumulation
loss
=
loss
/
batch_chunk_count
# Accumulate gradients - does not update weights just yet...
loss
.
backward
()
# Weight update on the network
if
((
idx
+
1
)
%
batch_chunk_count
==
0
)
or
(
idx
+
1
==
len
(
loader
)):
# Advances optimizer to the "next" state and applies weight update
# over the whole model
optimizer
.
step
()
# Zeroes gradients for the next batch
optimizer
.
zero_grad
()
# Normalize loss for current batch
batch_loss
=
numpy
.
average
(
losses_in_batch
,
weights
=
samples_in_batch
)
losses_in_epoch
.
append
(
batch_loss
.
item
())
samples_in_epoch
.
append
(
len
(
samples
))
losses_in_batch
.
clear
()
samples_in_batch
.
clear
()
logger
.
debug
(
f
"
batch loss:
{
batch_loss
.
item
()
}
"
)
return
numpy
.
average
(
losses_in_epoch
,
weights
=
samples_in_epoch
)
def
validate_epoch
(
loader
,
model
,
device
,
criterion
,
pbar_desc
):
"""
Processes input samples and returns loss (scalar)
Parameters
----------
loader : :py:class:`torch.utils.data.DataLoader`
To be used to validate the model
model : :py:class:`torch.nn.Module`
Network (e.g. driu, hed, unet)
optimizer : :py:mod:`torch.optim`
device : :py:class:`torch.device`
device to use
criterion : :py:class:`torch.nn.modules.loss._Loss`
loss function
pbar_desc : str
A string for the progress bar descriptor
Returns
-------
loss : float
A floating-point value corresponding the weighted average of this
epoch
'
s loss
"""
batch_losses
=
[]
samples_in_batch
=
[]
with
torch
.
no_grad
(),
torch_evaluation
(
model
):
for
samples
in
tqdm
(
loader
,
desc
=
pbar_desc
,
leave
=
False
,
disable
=
None
):
images
=
samples
[
1
].
to
(
device
=
device
,
non_blocking
=
torch
.
cuda
.
is_available
(),
)
labels
=
samples
[
2
].
to
(
device
=
device
,
non_blocking
=
torch
.
cuda
.
is_available
(),
)
# Increase label dimension if too low
# Allows single and multiclass usage
if
labels
.
ndim
==
1
:
labels
=
torch
.
reshape
(
labels
,
(
labels
.
shape
[
0
],
1
))
# data forwarding on the existing network
outputs
=
model
(
images
)
loss
=
criterion
(
outputs
,
labels
.
double
())
batch_losses
.
append
(
loss
.
item
())
samples_in_batch
.
append
(
len
(
samples
))
return
numpy
.
average
(
batch_losses
,
weights
=
samples_in_batch
)
def
write_log_info
(
epoch
,
current_time
,
eta_seconds
,
loss
,
valid_loss
,
extra_valid_losses
,
optimizer
,
logwriter
,
logfile
,
resource_data
,
):
"""
Write log info in trainlog.csv.
Parameters
----------
epoch : int
Current epoch
current_time : float
Current training time
eta_seconds : float
estimated time-of-arrival taking into consideration previous epoch performance
loss : float
Current epoch
'
s training loss
valid_loss : :py:class:`float`, None
Current epoch
'
s validation loss
extra_valid_losses : :py:class:`list` of :py:class:`float`
Validation losses from other validation datasets being currently
tracked
optimizer : :py:mod:`torch.optim`
logwriter : csv.DictWriter
Dictionary writer that give the ability to write on the trainlog.csv
logfile : io.TextIOWrapper
resource_data : tuple
Monitored resources at the machine (CPU and GPU)
"""
logdata
=
(
(
"
epoch
"
,
f
"
{
epoch
}
"
),
(
"
total_time
"
,
f
"
{
datetime
.
timedelta
(
seconds
=
int
(
current_time
))
}
"
,
),
(
"
eta
"
,
f
"
{
datetime
.
timedelta
(
seconds
=
int
(
eta_seconds
))
}
"
),
(
"
loss
"
,
f
"
{
loss
:
.
6
f
}
"
),
(
"
learning_rate
"
,
f
"
{
optimizer
.
param_groups
[
0
][
'
lr
'
]
:
.
6
f
}
"
),
)
if
valid_loss
is
not
None
:
logdata
+=
((
"
validation_loss
"
,
f
"
{
valid_loss
:
.
6
f
}
"
),)
if
extra_valid_losses
:
entry
=
numpy
.
array_str
(
numpy
.
array
(
extra_valid_losses
),
max_line_width
=
sys
.
maxsize
,
precision
=
6
,
)
logdata
+=
((
"
extra_validation_losses
"
,
entry
),)
logdata
+=
resource_data
logwriter
.
writerow
(
dict
(
k
for
k
in
logdata
))
logfile
.
flush
()
tqdm
.
write
(
"
|
"
.
join
([
f
"
{
k
}
:
{
v
}
"
for
(
k
,
v
)
in
logdata
[:
4
]]))
def
run
(
model
,
data_loader
,
...
...
@@ -562,123 +260,3 @@ def run(
)
_
=
trainer
.
fit
(
model
,
data_loader
,
valid_loader
,
ckpt_path
=
checkpoint
)
"""
# write static information to a CSV file
static_logfile_name = os.path.join(output_folder,
"
constants.csv
"
)
static_information_to_csv(static_logfile_name, device, n)
# Log continous information to (another) file
logfile_name = os.path.join(output_folder,
"
trainlog.csv
"
)
check_exist_logfile(logfile_name, arguments)
logfile_fields = create_logfile_fields(
valid_loader, extra_valid_loaders, device
)
# the lowest validation loss obtained so far - this value is updated only
# if a validation set is available
lowest_validation_loss = initialize_lowest_validation_loss(
logfile_name, arguments
)
# set a specific validation criterion if the user has set one
criterion_valid = criterion_valid or criterion
with open(logfile_name,
"
a+
"
, newline=
""
) as logfile:
logwriter = csv.DictWriter(logfile, fieldnames=logfile_fields)
if arguments[
"
epoch
"
] == 0:
logwriter.writeheader()
model.train() # set training mode
model.to(device) # set/cast parameters to device
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
# Total training timer
start_training_time = time.time()
for epoch in tqdm(
range(start_epoch, max_epoch),
desc=
"
epoch
"
,
leave=False,
disable=None,
):
with ResourceMonitor(
interval=monitoring_interval,
has_gpu=(device.type ==
"
cuda
"
),
main_pid=os.getpid(),
logging_level=logging.ERROR,
) as resource_monitor:
epoch = epoch + 1
arguments[
"
epoch
"
] = epoch
# Epoch time
start_epoch_time = time.time()
train_loss = train_epoch(
data_loader,
model,
optimizer,
device,
criterion,
batch_chunk_count,
)
valid_loss = (
validate_epoch(
valid_loader, model, device, criterion_valid,
"
valid
"
)
if valid_loader is not None
else None
)
extra_valid_losses = []
for pos, extra_valid_loader in enumerate(extra_valid_loaders):
loss = validate_epoch(
extra_valid_loader,
model,
device,
criterion_valid,
f
"
xval@{pos+1}
"
,
)
extra_valid_losses.append(loss)
lowest_validation_loss = checkpointer_process(
checkpointer,
checkpoint_period,
valid_loss,
lowest_validation_loss,
arguments,
epoch,
max_epoch,
)
# computes ETA (estimated time-of-arrival; end of training) taking
# into consideration previous epoch performance
epoch_time = time.time() - start_epoch_time
eta_seconds = epoch_time * (max_epoch - epoch)
current_time = time.time() - start_training_time
write_log_info(
epoch,
current_time,
eta_seconds,
train_loss,
valid_loss,
extra_valid_losses,
optimizer,
logwriter,
logfile,
resource_monitor.data,
)
total_training_time = time.time() - start_training_time
logger.info(
f
"
Total training time: {datetime.timedelta(seconds=total_training_time)} ({(total_training_time/max_epoch):.4f}s in average per epoch)
"
)
"""
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment