Skip to content
Snippets Groups Projects
Commit d6cbf9b1 authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

[data.hivtb] Minor adjustments

parent 75f98d0c
No related branches found
No related tags found
2 merge requests!10Update HIV-TB dataset,!6Making use of LightningDataModule and simplification of data loading
Pipeline #76731 failed
......@@ -11,7 +11,7 @@ from torchvision.transforms.functional import center_crop, to_tensor
from ...utils.rc import load_rc
from ..datamodule import CachingDataModule
from ..image_utils import load_pil_grayscale, remove_black_borders
from ..image_utils import remove_black_borders
from ..split import JSONDatabaseSplit
from ..typing import DatabaseSplit
from ..typing import RawDataLoader as _BaseRawDataLoader
......@@ -54,7 +54,9 @@ class RawDataLoader(_BaseRawDataLoader):
sample
The sample representation
"""
image = load_pil_grayscale(os.path.join(self.datadir, sample[0]))
image = PIL.Image.open(os.path.join(self.datadir, sample[0])).convert(
"L"
)
image = remove_black_borders(image)
tensor = to_tensor(image)
tensor = center_crop(tensor, min(*tensor.shape[1:]))
......@@ -99,21 +101,21 @@ class DataModule(CachingDataModule):
"""HIV-TB dataset for computer-aided diagnosis (only BMP files)
* Database reference: [HIV-TB-2019]_
* Original resolution (height x width or width x height): 2048 x 2500 pixels
or 2500 x 2048 pixels
* Original resolution, varying with most images being 2048 x 2500 pixels
or 2500 x 2048 pixels, but not all.
Data specifications:
* Raw data input (on disk):
* BMP images 8 bit grayscale
* resolution fixed to one of the cases above
* BMP (BMP3) and JPEG grayscale images encoded as 8-bit RGB, with
varying resolution
* Output image:
* Transforms:
* Load raw BMP with :py:mod:`PIL`
* Load raw BMP or JPEG with :py:mod:`PIL`
* Remove black borders
* Convert to torch tensor
* Torch center cropping to get square image
......
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 0)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-0.json")
"""HIV-TB dataset for TB detection (cross validation fold 0).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 1)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-1.json")
"""HIV-TB dataset for TB detection (cross validation fold 1).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 2)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-2.json")
"""HIV-TB dataset for TB detection (cross validation fold 2).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 3)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-3.json")
"""HIV-TB dataset for TB detection (cross validation fold 3).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 4)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-4.json")
"""HIV-TB dataset for TB detection (cross validation fold 4).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 5)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-5.json")
"""HIV-TB dataset for TB detection (cross validation fold 5).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 6)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-6.json")
"""HIV-TB dataset for TB detection (cross validation fold 6).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 7)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-7.json")
"""HIV-TB dataset for TB detection (cross validation fold 7).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 8)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-8.json")
"""HIV-TB dataset for TB detection (cross validation fold 8).
See :py:class:`DataModule` for technical details.
"""
......@@ -2,20 +2,10 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""HIV-TB dataset for TB detection (cross validation fold 9)
* Split reference: none (stratified kfolding)
* Stratified kfold protocol:
* Training samples: 72% of TB and healthy CXR (including labels)
* Validation samples: 18% of TB and healthy CXR (including labels)
* Test samples: 10% of TB and healthy CXR (including labels)
* This configuration resolution: 2048 x 2048 (default)
* See :py:mod:`ptbench.data.hivtb` for dataset details
"""
from .datamodule import DataModule
datamodule = DataModule("fold-9.json")
"""HIV-TB dataset for TB detection (cross validation fold 9).
See :py:class:`DataModule` for technical details.
"""
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment