Skip to content
Snippets Groups Projects
Commit d0e03dfe authored by Daniel CARRON's avatar Daniel CARRON :b:
Browse files

Moved tbx11k_simplified configs to data

parent 7753da96
No related branches found
No related tags found
No related merge requests found
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_8", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_8", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_9")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_9")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_9", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_9", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("default", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment