Skip to content
Snippets Groups Projects
Commit d0e03dfe authored by Daniel CARRON's avatar Daniel CARRON :b:
Browse files

Moved tbx11k_simplified configs to data

parent 7753da96
No related branches found
No related tags found
No related merge requests found
Showing
with 906 additions and 27 deletions
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
def _maker(protocol, RGB=False):
from torchvision import transforms
from ....data.tbx11k_simplified import dataset as raw
from ....data.transforms import ElasticDeformation
from .. import make_dataset as mk
post_transforms = []
if RGB:
post_transforms = [
transforms.Lambda(lambda x: x.convert("RGB")),
transforms.ToTensor(),
]
return mk(
[raw.subsets(protocol)],
[],
[ElasticDeformation(p=0.8)],
post_transforms,
)
......@@ -76,15 +76,36 @@ def _loader_bbox(context, sample):
return make_delayed_bbox(sample, _raw_data_loader_bbox)
dataset = JSONDataset(
json_dataset = JSONDataset(
protocols=_protocols,
fieldnames=("data", "label"),
loader=_loader,
)
dataset_with_bboxes = JSONDataset(
json_dataset_with_bboxes = JSONDataset(
protocols=_protocols,
fieldnames=("data", "label", "bboxes"),
loader=_loader_bbox,
)
"""TBX11K simplified dataset object."""
def _maker(protocol, RGB=False):
from torchvision import transforms
from .. import make_dataset
from ..transforms import ElasticDeformation
post_transforms = []
if RGB:
post_transforms = [
transforms.Lambda(lambda x: x.convert("RGB")),
transforms.ToTensor(),
]
return make_dataset(
[json_dataset.subsets(protocol)],
[],
[ElasticDeformation(p=0.8)],
post_transforms,
)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("default")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_0")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_0")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_0", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_0", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_1")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_1")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,39 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_1", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_1", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_2")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_2")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_2", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_2", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_3")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_3")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_3", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_3", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_4")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_4")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_4", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_4", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_5")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_5")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_5", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_5", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_6")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_6")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_6", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_6", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_7")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_7")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_7", RGB=True)
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_7", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
......@@ -12,6 +12,38 @@
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
dataset = _maker("fold_8")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_8")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment