Skip to content
Snippets Groups Projects
Commit cfd3773e authored by Daniel CARRON's avatar Daniel CARRON :b: Committed by André Anjos
Browse files

Update model configs

parent 8dc21400
No related branches found
No related tags found
1 merge request!6Making use of LightningDataModule and simplification of data loading
...@@ -4,32 +4,17 @@ ...@@ -4,32 +4,17 @@
"""AlexNet.""" """AlexNet."""
from torch import empty
from torch.nn import BCEWithLogitsLoss from torch.nn import BCEWithLogitsLoss
from torch.optim import SGD from torch.optim import SGD
from ...models.alexnet import Alexnet
# optimizer
optimizer = SGD
optimizer_configs = {"lr": 0.01, "momentum": 0.1}
# criterion
criterion = BCEWithLogitsLoss(pos_weight=empty(1))
criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
from ...data.transforms import ElasticDeformation from ...data.transforms import ElasticDeformation
from ...models.alexnet import Alexnet
augmentation_transforms = [
ElasticDeformation(p=0.8),
]
# model
model = Alexnet( model = Alexnet(
criterion, train_loss=BCEWithLogitsLoss(),
criterion_valid, validation_loss=BCEWithLogitsLoss(),
optimizer, optimizer_type=SGD,
optimizer_configs, optimizer_arguments=dict(lr=0.01, momentum=0.1),
augmentation_transforms=[ElasticDeformation(p=0.8)],
pretrained=False, pretrained=False,
augmentation_transforms=augmentation_transforms,
) )
...@@ -4,32 +4,17 @@ ...@@ -4,32 +4,17 @@
"""AlexNet.""" """AlexNet."""
from torch import empty
from torch.nn import BCEWithLogitsLoss from torch.nn import BCEWithLogitsLoss
from torch.optim import SGD from torch.optim import SGD
from ...models.alexnet import Alexnet
# optimizer
optimizer = SGD
optimizer_configs = {"lr": 0.01, "momentum": 0.1}
# criterion
criterion = BCEWithLogitsLoss(pos_weight=empty(1))
criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
from ...data.transforms import ElasticDeformation from ...data.transforms import ElasticDeformation
from ...models.alexnet import Alexnet
augmentation_transforms = [
ElasticDeformation(p=0.8),
]
# model
model = Alexnet( model = Alexnet(
criterion, train_loss=BCEWithLogitsLoss(),
criterion_valid, validation_loss=BCEWithLogitsLoss(),
optimizer, optimizer_type=SGD,
optimizer_configs, optimizer_arguments=dict(lr=0.01, momentum=0.1),
augmentation_transforms=[ElasticDeformation(p=0.8)],
pretrained=True, pretrained=True,
augmentation_transforms=augmentation_transforms,
) )
...@@ -4,32 +4,17 @@ ...@@ -4,32 +4,17 @@
"""DenseNet.""" """DenseNet."""
from torch import empty
from torch.nn import BCEWithLogitsLoss from torch.nn import BCEWithLogitsLoss
from torch.optim import Adam from torch.optim import Adam
from ...models.densenet import Densenet
# optimizer
optimizer = Adam
optimizer_configs = {"lr": 0.0001}
# criterion
criterion = BCEWithLogitsLoss(pos_weight=empty(1))
criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
from ...data.transforms import ElasticDeformation from ...data.transforms import ElasticDeformation
from ...models.densenet import Densenet
augmentation_transforms = [
ElasticDeformation(p=0.8),
]
# model
model = Densenet( model = Densenet(
criterion, train_loss=BCEWithLogitsLoss(),
criterion_valid, validation_loss=BCEWithLogitsLoss(),
optimizer, optimizer_type=Adam,
optimizer_configs, optimizer_arguments=dict(lr=0.0001),
augmentation_transforms=[ElasticDeformation(p=0.8)],
pretrained=False, pretrained=False,
augmentation_transforms=augmentation_transforms,
) )
...@@ -4,32 +4,17 @@ ...@@ -4,32 +4,17 @@
"""DenseNet.""" """DenseNet."""
from torch import empty
from torch.nn import BCEWithLogitsLoss from torch.nn import BCEWithLogitsLoss
from torch.optim import Adam from torch.optim import Adam
from ...models.densenet import Densenet
# optimizer
optimizer = Adam
optimizer_configs = {"lr": 0.0001}
# criterion
criterion = BCEWithLogitsLoss(pos_weight=empty(1))
criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
from ...data.transforms import ElasticDeformation from ...data.transforms import ElasticDeformation
from ...models.densenet import Densenet
augmentation_transforms = [
ElasticDeformation(p=0.8),
]
# model
model = Densenet( model = Densenet(
criterion, train_loss=BCEWithLogitsLoss(),
criterion_valid, validation_loss=BCEWithLogitsLoss(),
optimizer, optimizer_type=Adam,
optimizer_configs, optimizer_arguments=dict(lr=0.0001),
augmentation_transforms=[ElasticDeformation(p=0.8)],
pretrained=True, pretrained=True,
augmentation_transforms=augmentation_transforms,
) )
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment