Skip to content
Snippets Groups Projects
Commit c15ea640 authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

[readme,doc,pyproject,scripts] Remove traces of "tuberculosis" exclusivity

parent 5e759a6d
No related branches found
No related tags found
1 merge request!6Making use of LightningDataModule and simplification of data loading
......@@ -8,9 +8,10 @@ SPDX-License-Identifier: GPL-3.0-or-later
[![coverage](https://gitlab.idiap.ch/biosignal/software/ptbench/badges/main/coverage.svg)](https://www.idiap.ch/software/biosignal/docs/biosignal/software/ptbench/main/coverage/index.html)
[![repository](https://img.shields.io/badge/gitlab-project-0000c0.svg)](https://gitlab.idiap.ch/biosignal/software/ptbench)
# Active Pulmonary Tuberculosis Detection On Chest X-Rays
# Computer-Aided Disease Detection from Medical Data
Benchmarks for training and evaluating deep models for the detection of active
Pulmonary Tuberculosis from Chest X-Ray imaging.
Benchmarks of convolutional neural network (CNN) architectures applied to
disease detection, including Pulmonary Tuberculosis (TB) detection on chest
X-rays (CXR).
For installation and usage instructions, check-out our documentation.
......@@ -4,14 +4,15 @@
.. _ptbench:
=========================================================
Active Pulmonary Tuberculosis Detection On Chest X-Rays
=========================================================
====================================================
Computer-Aided Disease Detection from Medical Data
====================================================
.. todolist::
Benchmarks of convolutional neural network (CNN) architectures applied to
Pulmonary Tuberculosis (TB) detection on chest X-rays (CXR).
disease detection, including Pulmonary Tuberculosis (TB) detection on chest
X-rays (CXR).
Please use the BibTeX reference below to cite this work:
......
......@@ -10,7 +10,7 @@ build-backend = "setuptools.build_meta"
name = "ptbench"
version = "1.0.0b0"
requires-python = ">=3.10"
description = "Benchmarks for training and evaluating deep models for the detection of active Pulmonary Tuberculosis from Chest X-Ray imaging."
description = "Benchmarks for Computer-Aided Disease Detection from Medical Data."
dynamic = ["readme"]
license = { text = "GNU General Public License v3 (GPLv3)" }
authors = [{ name = "Geoffrey Raposo", email = "geoffrey@raposo.ch" }]
......
......@@ -22,7 +22,7 @@ from . import (
context_settings=dict(help_option_names=["-?", "-h", "--help"]),
)
def cli():
"""Active Tuberculosis Detection On Chest X-Ray Images."""
"""Image classification benchmark."""
pass
......
......@@ -11,6 +11,9 @@ from clapper.logging import setup
from .click import ConfigCommand
# avoids X11/graphical desktop requirement when creating plots
__import__("matplotlib").use("agg")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
......@@ -76,7 +79,7 @@ def evaluate(
threshold: str | float,
**_, # ignored
) -> None:
"""Evaluates predictions (from a model) on a binary classification task."""
"""Evaluates predictions (from a model) on a classification task."""
import json
import typing
......
......@@ -9,6 +9,9 @@ from clapper.logging import setup
from .train import reusable_options as training_options
# avoids X11/graphical desktop requirement when creating plots
__import__("matplotlib").use("agg")
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
......
......@@ -117,7 +117,8 @@ def predict(
parallel,
**_,
) -> None:
"""Predicts Tuberculosis presence (probabilities) on input images."""
"""Runs inference (generates scores) on all input images, using a pre-
trained model."""
import json
import shutil
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment