Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mednet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
medai
software
mednet
Commits
ba0cbbf5
Commit
ba0cbbf5
authored
1 year ago
by
Daniel CARRON
Browse files
Options
Downloads
Patches
Plain Diff
Added DataModule to predict
parent
239ca0ff
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/ptbench/data/datamodule.py
+7
-22
7 additions, 22 deletions
src/ptbench/data/datamodule.py
src/ptbench/scripts/predict.py
+6
-6
6 additions, 6 deletions
src/ptbench/scripts/predict.py
with
13 additions
and
28 deletions
src/ptbench/data/datamodule.py
+
7
−
22
View file @
ba0cbbf5
...
...
@@ -67,17 +67,7 @@ class DataModule(pl.LightningDataModule):
self
.
extra_validation_datasets
=
None
if
stage
==
"
predict
"
:
self
.
predict_dataset
=
[]
for
split_key
in
self
.
dataset
.
keys
():
if
split_key
.
startswith
(
"
_
"
):
logger
.
info
(
f
"
Skipping dataset
'
{
split_key
}
'
(not to be evaluated)
"
)
continue
else
:
self
.
predict_dataset
.
append
(
self
.
dataset
[
split_key
])
self
.
predict_dataset
=
self
.
dataset
def
train_dataloader
(
self
):
train_samples_weights
=
get_samples_weights
(
self
.
train_dataset
)
...
...
@@ -127,14 +117,9 @@ class DataModule(pl.LightningDataModule):
return
loaders_dict
def
predict_dataloader
(
self
):
loaders_dict
=
{}
for
set_idx
,
pred_set
in
enumerate
(
self
.
predict_dataset
):
loaders_dict
[
set_idx
]
=
DataLoader
(
dataset
=
pred_set
,
batch_size
=
self
.
predict_batch_size
,
shuffle
=
False
,
pin_memory
=
self
.
pin_memory
,
)
return
loaders_dict
return
DataLoader
(
dataset
=
self
.
predict_dataset
,
batch_size
=
self
.
predict_batch_size
,
shuffle
=
False
,
pin_memory
=
self
.
pin_memory
,
)
This diff is collapsed.
Click to expand it.
src/ptbench/scripts/predict.py
+
6
−
6
View file @
ba0cbbf5
...
...
@@ -117,6 +117,7 @@ def predict(
from
sklearn
import
metrics
from
torch.utils.data
import
ConcatDataset
,
DataLoader
from
..data.datamodule
import
DataModule
from
..engine.predictor
import
run
from
..utils.plot
import
relevance_analysis_plot
...
...
@@ -147,14 +148,13 @@ def predict(
logger
.
info
(
f
"
Running inference on
'
{
k
}
'
set...
"
)
data_loader
=
DataLoader
(
dataset
=
v
,
batch_size
=
batch_size
,
shuffle
=
False
,
pin_memory
=
torch
.
cuda
.
is_available
(),
datamodule
=
DataModule
(
v
,
train_batch_size
=
batch_size
,
)
predictions
=
run
(
model
,
data
_loader
,
k
,
accelerator
,
output_folder
,
grad_cams
model
,
data
module
,
k
,
accelerator
,
output_folder
,
grad_cams
)
# Relevance analysis using permutation feature importance
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment