Skip to content
Snippets Groups Projects
Commit 9b297231 authored by ogueler@idiap.ch's avatar ogueler@idiap.ch
Browse files

removed unusable tbx11k custom split 3

parent 5f644c0a
No related branches found
No related tags found
2 merge requests!5Tbx11k,!4Moved code to lightning
Pipeline #73543 failed
Showing
with 0 additions and 340 deletions
...@@ -57,8 +57,6 @@ Direct data-access through iterators. ...@@ -57,8 +57,6 @@ Direct data-access through iterators.
ptbench.data.tbx11k_simplified_RS ptbench.data.tbx11k_simplified_RS
ptbench.data.tbx11k_simplified_v2 ptbench.data.tbx11k_simplified_v2
ptbench.data.tbx11k_simplified_v2_RS ptbench.data.tbx11k_simplified_v2_RS
ptbench.data.tbx11k_simplified_v3
ptbench.data.tbx11k_simplified_v3_RS
.. _ptbench.api.models: .. _ptbench.api.models:
......
...@@ -80,9 +80,6 @@ if applicable. Use these datasets for training and evaluating your models. ...@@ -80,9 +80,6 @@ if applicable. Use these datasets for training and evaluating your models.
ptbench.configs.datasets.tbx11k_simplified_v2.default ptbench.configs.datasets.tbx11k_simplified_v2.default
ptbench.configs.datasets.tbx11k_simplified_v2.rgb ptbench.configs.datasets.tbx11k_simplified_v2.rgb
ptbench.configs.datasets.tbx11k_simplified_v2_RS.default ptbench.configs.datasets.tbx11k_simplified_v2_RS.default
ptbench.configs.datasets.tbx11k_simplified_v3.default
ptbench.configs.datasets.tbx11k_simplified_v3.rgb
ptbench.configs.datasets.tbx11k_simplified_v3_RS.default
.. _ptbench.configs.datasets.folds: .. _ptbench.configs.datasets.folds:
...@@ -133,9 +130,6 @@ datasets. Nine other folds are available for every configuration (from 1 to ...@@ -133,9 +130,6 @@ datasets. Nine other folds are available for every configuration (from 1 to
ptbench.configs.datasets.tbx11k_simplified_v2.fold_0 ptbench.configs.datasets.tbx11k_simplified_v2.fold_0
ptbench.configs.datasets.tbx11k_simplified_v2.fold_0_rgb ptbench.configs.datasets.tbx11k_simplified_v2.fold_0_rgb
ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_0 ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_0
ptbench.configs.datasets.tbx11k_simplified_v3.fold_0
ptbench.configs.datasets.tbx11k_simplified_v3.fold_0_rgb
ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_0
.. include:: links.rst .. include:: links.rst
...@@ -256,41 +256,6 @@ tbx11k_simplified_v2_rs_f6 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.f ...@@ -256,41 +256,6 @@ tbx11k_simplified_v2_rs_f6 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.f
tbx11k_simplified_v2_rs_f7 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_7" tbx11k_simplified_v2_rs_f7 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_7"
tbx11k_simplified_v2_rs_f8 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_8" tbx11k_simplified_v2_rs_f8 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_8"
tbx11k_simplified_v2_rs_f9 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_9" tbx11k_simplified_v2_rs_f9 = "ptbench.configs.datasets.tbx11k_simplified_v2_RS.fold_9"
# TBX11K simplified dataset split 3 (and cross-validation folds)
tbx11k_simplified_v3 = "ptbench.configs.datasets.tbx11k_simplified_v3.default"
tbx11k_simplified_v3_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.rgb"
tbx11k_simplified_v3_f0 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_0"
tbx11k_simplified_v3_f1 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_1"
tbx11k_simplified_v3_f2 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_2"
tbx11k_simplified_v3_f3 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_3"
tbx11k_simplified_v3_f4 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_4"
tbx11k_simplified_v3_f5 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_5"
tbx11k_simplified_v3_f6 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_6"
tbx11k_simplified_v3_f7 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_7"
tbx11k_simplified_v3_f8 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_8"
tbx11k_simplified_v3_f9 = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_9"
tbx11k_simplified_v3_f0_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_0_rgb"
tbx11k_simplified_v3_f1_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_1_rgb"
tbx11k_simplified_v3_f2_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_2_rgb"
tbx11k_simplified_v3_f3_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_3_rgb"
tbx11k_simplified_v3_f4_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_4_rgb"
tbx11k_simplified_v3_f5_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_5_rgb"
tbx11k_simplified_v3_f6_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_6_rgb"
tbx11k_simplified_v3_f7_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_7_rgb"
tbx11k_simplified_v3_f8_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_8_rgb"
tbx11k_simplified_v3_f9_rgb = "ptbench.configs.datasets.tbx11k_simplified_v3.fold_9_rgb"
# extended TBX11K simplified dataset split 3 (with radiological signs)
tbx11k_simplified_v3_rs = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.default"
tbx11k_simplified_v3_rs_f0 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_0"
tbx11k_simplified_v3_rs_f1 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_1"
tbx11k_simplified_v3_rs_f2 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_2"
tbx11k_simplified_v3_rs_f3 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_3"
tbx11k_simplified_v3_rs_f4 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_4"
tbx11k_simplified_v3_rs_f5 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_5"
tbx11k_simplified_v3_rs_f6 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_6"
tbx11k_simplified_v3_rs_f7 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_7"
tbx11k_simplified_v3_rs_f8 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_8"
tbx11k_simplified_v3_rs_f9 = "ptbench.configs.datasets.tbx11k_simplified_v3_RS.fold_9"
# montgomery-shenzhen aggregated dataset # montgomery-shenzhen aggregated dataset
mc_ch = "ptbench.configs.datasets.mc_ch.default" mc_ch = "ptbench.configs.datasets.mc_ch.default"
mc_ch_rgb = "ptbench.configs.datasets.mc_ch.rgb" mc_ch_rgb = "ptbench.configs.datasets.mc_ch.rgb"
......
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
def _maker(protocol, RGB=False):
from torchvision import transforms
from ....data.tbx11k_simplified_v3 import dataset as raw
from ....data.transforms import ElasticDeformation
from .. import make_dataset as mk
post_transforms = []
if RGB:
post_transforms = [
transforms.Lambda(lambda x: x.convert("RGB")),
transforms.ToTensor(),
]
return mk(
[raw.subsets(protocol)],
[],
[ElasticDeformation(p=0.8)],
post_transforms,
)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (default protocol)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("default")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 0)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_0")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 0, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_0", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 1)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_1")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 1, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_1", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 2)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_2")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 2, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_2", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 3)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_3")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 3, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_3", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 4)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_4")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 4, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_4", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 5)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_5")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 5, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_5", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 6)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_6")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 6, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_6", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 7)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_7")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment