Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mednet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
medai
software
mednet
Commits
85da2f49
Commit
85da2f49
authored
1 year ago
by
Daniel CARRON
Browse files
Options
Downloads
Patches
Plain Diff
Removed custom checkpointer, saving missing files
parent
d20d2311
No related branches found
No related tags found
1 merge request
!4
Moved code to lightning
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/ptbench/engine/trainer.py
+21
-70
21 additions, 70 deletions
src/ptbench/engine/trainer.py
src/ptbench/utils/checkpointer.py
+0
-99
0 additions, 99 deletions
src/ptbench/utils/checkpointer.py
with
21 additions
and
169 deletions
src/ptbench/engine/trainer.py
+
21
−
70
View file @
85da2f49
...
...
@@ -129,9 +129,9 @@ def save_model_summary(output_folder, model):
summary_path
=
os
.
path
.
join
(
output_folder
,
"
model_summary.txt
"
)
logger
.
info
(
f
"
Saving model summary at
{
summary_path
}
...
"
)
with
open
(
summary_path
,
"
w
"
)
as
f
:
summary
=
str
(
ModelSummary
(
model
,
max_depth
=-
1
)
)
f
.
write
(
summary
)
return
summary
summary
=
ModelSummary
(
model
,
max_depth
=-
1
)
f
.
write
(
str
(
summary
)
)
return
summary
,
ModelSummary
(
model
).
total_parameters
def
static_information_to_csv
(
static_logfile_name
,
device
,
n
):
...
...
@@ -374,62 +374,6 @@ def validate_epoch(loader, model, device, criterion, pbar_desc):
return
numpy
.
average
(
batch_losses
,
weights
=
samples_in_batch
)
def
checkpointer_process
(
checkpointer
,
checkpoint_period
,
valid_loss
,
lowest_validation_loss
,
arguments
,
epoch
,
max_epoch
,
):
"""
Process the checkpointer, save the final model and keep track of the
best model.
Parameters
----------
checkpointer : :py:class:`ptbench.utils.checkpointer.Checkpointer`
checkpointer implementation
checkpoint_period : int
save a checkpoint every ``n`` epochs. If set to ``0`` (zero), then do
not save intermediary checkpoints
valid_loss : float
Current epoch validation loss
lowest_validation_loss : float
Keeps track of the best (lowest) validation loss
arguments : dict
start and end epochs
max_epoch : int
end_potch
Returns
-------
lowest_validation_loss : float
The lowest validation loss currently observed
"""
if
checkpoint_period
and
(
epoch
%
checkpoint_period
==
0
):
checkpointer
.
save
(
"
model_periodic_save
"
,
**
arguments
)
if
valid_loss
is
not
None
and
valid_loss
<
lowest_validation_loss
:
lowest_validation_loss
=
valid_loss
logger
.
info
(
f
"
Found new low on validation set:
"
f
"
{
lowest_validation_loss
:
.
6
f
}
"
)
checkpointer
.
save
(
"
model_lowest_valid_loss
"
,
**
arguments
)
if
epoch
>=
max_epoch
:
checkpointer
.
save
(
"
model_final_epoch
"
,
**
arguments
)
return
lowest_validation_loss
def
write_log_info
(
epoch
,
current_time
,
...
...
@@ -578,7 +522,7 @@ def run(
os
.
makedirs
(
output_folder
,
exist_ok
=
True
)
# Save model summary
_
=
save_model_summary
(
output_folder
,
model
)
r
,
n
=
save_model_summary
(
output_folder
,
model
)
csv_logger
=
CSVLogger
(
output_folder
,
"
logs_csv
"
)
tensorboard_logger
=
TensorBoardLogger
(
output_folder
,
"
logs_tensorboard
"
)
...
...
@@ -590,6 +534,22 @@ def run(
logging_level
=
logging
.
ERROR
,
)
checkpoint_callback
=
ModelCheckpoint
(
output_folder
,
"
model_lowest_valid_loss
"
,
save_last
=
True
,
monitor
=
"
validation_loss
"
,
mode
=
"
min
"
,
save_on_train_epoch_end
=
False
,
every_n_epochs
=
checkpoint_period
,
)
checkpoint_callback
.
CHECKPOINT_NAME_LAST
=
"
model_final_epoch
"
# write static information to a CSV file
static_logfile_name
=
os
.
path
.
join
(
output_folder
,
"
constants.csv
"
)
static_information_to_csv
(
static_logfile_name
,
device
,
n
)
with
resource_monitor
:
trainer
=
Trainer
(
accelerator
=
"
auto
"
,
...
...
@@ -597,16 +557,7 @@ def run(
max_epochs
=
max_epoch
,
logger
=
[
csv_logger
,
tensorboard_logger
],
check_val_every_n_epoch
=
1
,
callbacks
=
[
LoggingCallback
(
resource_monitor
),
ModelCheckpoint
(
output_folder
,
monitor
=
"
validation_loss
"
,
mode
=
"
min
"
,
save_on_train_epoch_end
=
False
,
every_n_epochs
=
checkpoint_period
,
),
],
callbacks
=
[
LoggingCallback
(
resource_monitor
),
checkpoint_callback
],
)
_
=
trainer
.
fit
(
model
,
data_loader
,
valid_loader
)
...
...
This diff is collapsed.
Click to expand it.
src/ptbench/utils/checkpointer.py
deleted
100644 → 0
+
0
−
99
View file @
d20d2311
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
import
logging
import
os
import
torch
logger
=
logging
.
getLogger
(
__name__
)
class
Checkpointer
:
"""
A simple pytorch checkpointer.
Parameters
----------
model : torch.nn.Module
Network model, eventually loaded from a checkpointed file
optimizer : :py:mod:`torch.optim`, Optional
Optimizer
scheduler : :py:mod:`torch.optim`, Optional
Learning rate scheduler
path : :py:class:`str`, Optional
Directory where to save checkpoints.
"""
def
__init__
(
self
,
model
,
optimizer
=
None
,
scheduler
=
None
,
path
=
"
.
"
):
self
.
model
=
model
self
.
optimizer
=
optimizer
self
.
scheduler
=
scheduler
self
.
path
=
os
.
path
.
realpath
(
path
)
def
save
(
self
,
name
,
**
kwargs
):
data
=
{}
data
[
"
model
"
]
=
self
.
model
.
state_dict
()
if
self
.
optimizer
is
not
None
:
data
[
"
optimizer
"
]
=
self
.
optimizer
.
state_dict
()
if
self
.
scheduler
is
not
None
:
data
[
"
scheduler
"
]
=
self
.
scheduler
.
state_dict
()
data
.
update
(
kwargs
)
name
=
f
"
{
name
}
.pth
"
outf
=
os
.
path
.
join
(
self
.
path
,
name
)
logger
.
info
(
f
"
Saving checkpoint to
{
outf
}
"
)
torch
.
save
(
data
,
outf
)
with
open
(
self
.
_last_checkpoint_filename
,
"
w
"
)
as
f
:
f
.
write
(
name
)
def
load
(
self
,
f
=
None
):
"""
Loads model, optimizer and scheduler from file.
Parameters
==========
f : :py:class:`str`, Optional
Name of a file (absolute or relative to ``self.path``), that
contains the checkpoint data to load into the model, and optionally
into the optimizer and the scheduler. If not specified, loads data
from current path.
"""
if
f
is
None
:
f
=
self
.
last_checkpoint
()
if
f
is
None
:
# no checkpoint could be found
logger
.
warning
(
"
No checkpoint found (and none passed)
"
)
return
{}
# loads file data into memory
logger
.
info
(
f
"
Loading checkpoint from
{
f
}
...
"
)
checkpoint
=
torch
.
load
(
f
,
map_location
=
torch
.
device
(
"
cpu
"
))
# converts model entry to model parameters
self
.
model
.
load_state_dict
(
checkpoint
.
pop
(
"
model
"
))
if
self
.
optimizer
is
not
None
:
self
.
optimizer
.
load_state_dict
(
checkpoint
.
pop
(
"
optimizer
"
))
if
self
.
scheduler
is
not
None
:
self
.
scheduler
.
load_state_dict
(
checkpoint
.
pop
(
"
scheduler
"
))
return
checkpoint
@property
def
_last_checkpoint_filename
(
self
):
return
os
.
path
.
join
(
self
.
path
,
"
last_checkpoint
"
)
def
has_checkpoint
(
self
):
return
os
.
path
.
exists
(
self
.
_last_checkpoint_filename
)
def
last_checkpoint
(
self
):
if
self
.
has_checkpoint
():
with
open
(
self
.
_last_checkpoint_filename
)
as
fobj
:
return
os
.
path
.
join
(
self
.
path
,
fobj
.
read
().
strip
())
return
None
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment