Skip to content
Snippets Groups Projects
Commit 6f98cfcc authored by Daniel CARRON's avatar Daniel CARRON :b:
Browse files

Remove rgb datasets

parent 79b5897f
No related branches found
No related tags found
1 merge request!6Making use of LightningDataModule and simplification of data loading
Pipeline #76548 failed
...@@ -114,7 +114,6 @@ indian_f8 = "ptbench.data.indian.datamodules:fold_8" ...@@ -114,7 +114,6 @@ indian_f8 = "ptbench.data.indian.datamodules:fold_8"
indian_f9 = "ptbench.data.indian.datamodules:fold_9" indian_f9 = "ptbench.data.indian.datamodules:fold_9"
# TBX11K simplified dataset split 1 (and cross-validation folds) # TBX11K simplified dataset split 1 (and cross-validation folds)
tbx11k_simplified = "ptbench.data.tbx11k_simplified.default" tbx11k_simplified = "ptbench.data.tbx11k_simplified.default"
tbx11k_simplified_rgb = "ptbench.data.tbx11k_simplified.rgb"
tbx11k_simplified_f0 = "ptbench.data.tbx11k_simplified.fold_0" tbx11k_simplified_f0 = "ptbench.data.tbx11k_simplified.fold_0"
tbx11k_simplified_f1 = "ptbench.data.tbx11k_simplified.fold_1" tbx11k_simplified_f1 = "ptbench.data.tbx11k_simplified.fold_1"
tbx11k_simplified_f2 = "ptbench.data.tbx11k_simplified.fold_2" tbx11k_simplified_f2 = "ptbench.data.tbx11k_simplified.fold_2"
...@@ -125,19 +124,8 @@ tbx11k_simplified_f6 = "ptbench.data.tbx11k_simplified.fold_6" ...@@ -125,19 +124,8 @@ tbx11k_simplified_f6 = "ptbench.data.tbx11k_simplified.fold_6"
tbx11k_simplified_f7 = "ptbench.data.tbx11k_simplified.fold_7" tbx11k_simplified_f7 = "ptbench.data.tbx11k_simplified.fold_7"
tbx11k_simplified_f8 = "ptbench.data.tbx11k_simplified.fold_8" tbx11k_simplified_f8 = "ptbench.data.tbx11k_simplified.fold_8"
tbx11k_simplified_f9 = "ptbench.data.tbx11k_simplified.fold_9" tbx11k_simplified_f9 = "ptbench.data.tbx11k_simplified.fold_9"
tbx11k_simplified_f0_rgb = "ptbench.data.tbx11k_simplified.fold_0_rgb"
tbx11k_simplified_f1_rgb = "ptbench.data.tbx11k_simplified.fold_1_rgb"
tbx11k_simplified_f2_rgb = "ptbench.data.tbx11k_simplified.fold_2_rgb"
tbx11k_simplified_f3_rgb = "ptbench.data.tbx11k_simplified.fold_3_rgb"
tbx11k_simplified_f4_rgb = "ptbench.data.tbx11k_simplified.fold_4_rgb"
tbx11k_simplified_f5_rgb = "ptbench.data.tbx11k_simplified.fold_5_rgb"
tbx11k_simplified_f6_rgb = "ptbench.data.tbx11k_simplified.fold_6_rgb"
tbx11k_simplified_f7_rgb = "ptbench.data.tbx11k_simplified.fold_7_rgb"
tbx11k_simplified_f8_rgb = "ptbench.data.tbx11k_simplified.fold_8_rgb"
tbx11k_simplified_f9_rgb = "ptbench.data.tbx11k_simplified.fold_9_rgb"
# TBX11K simplified dataset split 2 (and cross-validation folds) # TBX11K simplified dataset split 2 (and cross-validation folds)
tbx11k_simplified_v2 = "ptbench.data.tbx11k_simplified_v2.default" tbx11k_simplified_v2 = "ptbench.data.tbx11k_simplified_v2.default"
tbx11k_simplified_v2_rgb = "ptbench.data.tbx11k_simplified_v2.rgb"
tbx11k_simplified_v2_f0 = "ptbench.data.tbx11k_simplified_v2.fold_0" tbx11k_simplified_v2_f0 = "ptbench.data.tbx11k_simplified_v2.fold_0"
tbx11k_simplified_v2_f1 = "ptbench.data.tbx11k_simplified_v2.fold_1" tbx11k_simplified_v2_f1 = "ptbench.data.tbx11k_simplified_v2.fold_1"
tbx11k_simplified_v2_f2 = "ptbench.data.tbx11k_simplified_v2.fold_2" tbx11k_simplified_v2_f2 = "ptbench.data.tbx11k_simplified_v2.fold_2"
...@@ -148,19 +136,8 @@ tbx11k_simplified_v2_f6 = "ptbench.data.tbx11k_simplified_v2.fold_6" ...@@ -148,19 +136,8 @@ tbx11k_simplified_v2_f6 = "ptbench.data.tbx11k_simplified_v2.fold_6"
tbx11k_simplified_v2_f7 = "ptbench.data.tbx11k_simplified_v2.fold_7" tbx11k_simplified_v2_f7 = "ptbench.data.tbx11k_simplified_v2.fold_7"
tbx11k_simplified_v2_f8 = "ptbench.data.tbx11k_simplified_v2.fold_8" tbx11k_simplified_v2_f8 = "ptbench.data.tbx11k_simplified_v2.fold_8"
tbx11k_simplified_v2_f9 = "ptbench.data.tbx11k_simplified_v2.fold_9" tbx11k_simplified_v2_f9 = "ptbench.data.tbx11k_simplified_v2.fold_9"
tbx11k_simplified_v2_f0_rgb = "ptbench.data.tbx11k_simplified_v2.fold_0_rgb"
tbx11k_simplified_v2_f1_rgb = "ptbench.data.tbx11k_simplified_v2.fold_1_rgb"
tbx11k_simplified_v2_f2_rgb = "ptbench.data.tbx11k_simplified_v2.fold_2_rgb"
tbx11k_simplified_v2_f3_rgb = "ptbench.data.tbx11k_simplified_v2.fold_3_rgb"
tbx11k_simplified_v2_f4_rgb = "ptbench.data.tbx11k_simplified_v2.fold_4_rgb"
tbx11k_simplified_v2_f5_rgb = "ptbench.data.tbx11k_simplified_v2.fold_5_rgb"
tbx11k_simplified_v2_f6_rgb = "ptbench.data.tbx11k_simplified_v2.fold_6_rgb"
tbx11k_simplified_v2_f7_rgb = "ptbench.data.tbx11k_simplified_v2.fold_7_rgb"
tbx11k_simplified_v2_f8_rgb = "ptbench.data.tbx11k_simplified_v2.fold_8_rgb"
tbx11k_simplified_v2_f9_rgb = "ptbench.data.tbx11k_simplified_v2.fold_9_rgb"
# montgomery-shenzhen aggregated dataset # montgomery-shenzhen aggregated dataset
mc_ch = "ptbench.data.mc_ch.default" mc_ch = "ptbench.data.mc_ch.default"
mc_ch_rgb = "ptbench.data.mc_ch.rgb"
mc_ch_f0 = "ptbench.data.mc_ch.fold_0" mc_ch_f0 = "ptbench.data.mc_ch.fold_0"
mc_ch_f1 = "ptbench.data.mc_ch.fold_1" mc_ch_f1 = "ptbench.data.mc_ch.fold_1"
mc_ch_f2 = "ptbench.data.mc_ch.fold_2" mc_ch_f2 = "ptbench.data.mc_ch.fold_2"
...@@ -171,19 +148,8 @@ mc_ch_f6 = "ptbench.data.mc_ch.fold_6" ...@@ -171,19 +148,8 @@ mc_ch_f6 = "ptbench.data.mc_ch.fold_6"
mc_ch_f7 = "ptbench.data.mc_ch.fold_7" mc_ch_f7 = "ptbench.data.mc_ch.fold_7"
mc_ch_f8 = "ptbench.data.mc_ch.fold_8" mc_ch_f8 = "ptbench.data.mc_ch.fold_8"
mc_ch_f9 = "ptbench.data.mc_ch.fold_9" mc_ch_f9 = "ptbench.data.mc_ch.fold_9"
mc_ch_f0_rgb = "ptbench.data.mc_ch.fold_0_rgb"
mc_ch_f1_rgb = "ptbench.data.mc_ch.fold_1_rgb"
mc_ch_f2_rgb = "ptbench.data.mc_ch.fold_2_rgb"
mc_ch_f3_rgb = "ptbench.data.mc_ch.fold_3_rgb"
mc_ch_f4_rgb = "ptbench.data.mc_ch.fold_4_rgb"
mc_ch_f5_rgb = "ptbench.data.mc_ch.fold_5_rgb"
mc_ch_f6_rgb = "ptbench.data.mc_ch.fold_6_rgb"
mc_ch_f7_rgb = "ptbench.data.mc_ch.fold_7_rgb"
mc_ch_f8_rgb = "ptbench.data.mc_ch.fold_8_rgb"
mc_ch_f9_rgb = "ptbench.data.mc_ch.fold_9_rgb"
# montgomery-shenzhen-indian aggregated dataset # montgomery-shenzhen-indian aggregated dataset
mc_ch_in = "ptbench.data.mc_ch_in.default" mc_ch_in = "ptbench.data.mc_ch_in.default"
mc_ch_in_rgb = "ptbench.data.mc_ch_in.rgb"
mc_ch_in_f0 = "ptbench.data.mc_ch_in.fold_0" mc_ch_in_f0 = "ptbench.data.mc_ch_in.fold_0"
mc_ch_in_f1 = "ptbench.data.mc_ch_in.fold_1" mc_ch_in_f1 = "ptbench.data.mc_ch_in.fold_1"
mc_ch_in_f2 = "ptbench.data.mc_ch_in.fold_2" mc_ch_in_f2 = "ptbench.data.mc_ch_in.fold_2"
...@@ -194,19 +160,8 @@ mc_ch_in_f6 = "ptbench.data.mc_ch_in.fold_6" ...@@ -194,19 +160,8 @@ mc_ch_in_f6 = "ptbench.data.mc_ch_in.fold_6"
mc_ch_in_f7 = "ptbench.data.mc_ch_in.fold_7" mc_ch_in_f7 = "ptbench.data.mc_ch_in.fold_7"
mc_ch_in_f8 = "ptbench.data.mc_ch_in.fold_8" mc_ch_in_f8 = "ptbench.data.mc_ch_in.fold_8"
mc_ch_in_f9 = "ptbench.data.mc_ch_in.fold_9" mc_ch_in_f9 = "ptbench.data.mc_ch_in.fold_9"
mc_ch_in_f0_rgb = "ptbench.data.mc_ch_in.fold_0_rgb"
mc_ch_in_f1_rgb = "ptbench.data.mc_ch_in.fold_1_rgb"
mc_ch_in_f2_rgb = "ptbench.data.mc_ch_in.fold_2_rgb"
mc_ch_in_f3_rgb = "ptbench.data.mc_ch_in.fold_3_rgb"
mc_ch_in_f4_rgb = "ptbench.data.mc_ch_in.fold_4_rgb"
mc_ch_in_f5_rgb = "ptbench.data.mc_ch_in.fold_5_rgb"
mc_ch_in_f6_rgb = "ptbench.data.mc_ch_in.fold_6_rgb"
mc_ch_in_f7_rgb = "ptbench.data.mc_ch_in.fold_7_rgb"
mc_ch_in_f8_rgb = "ptbench.data.mc_ch_in.fold_8_rgb"
mc_ch_in_f9_rgb = "ptbench.data.mc_ch_in.fold_9_rgb"
# montgomery-shenzhen-indian-tbx11k aggregated dataset # montgomery-shenzhen-indian-tbx11k aggregated dataset
mc_ch_in_11k = "ptbench.data.mc_ch_in_11k.default" mc_ch_in_11k = "ptbench.data.mc_ch_in_11k.default"
mc_ch_in_11k_rgb = "ptbench.data.mc_ch_in_11k.rgb"
mc_ch_in_11k_f0 = "ptbench.data.mc_ch_in_11k.fold_0" mc_ch_in_11k_f0 = "ptbench.data.mc_ch_in_11k.fold_0"
mc_ch_in_11k_f1 = "ptbench.data.mc_ch_in_11k.fold_1" mc_ch_in_11k_f1 = "ptbench.data.mc_ch_in_11k.fold_1"
mc_ch_in_11k_f2 = "ptbench.data.mc_ch_in_11k.fold_2" mc_ch_in_11k_f2 = "ptbench.data.mc_ch_in_11k.fold_2"
...@@ -217,19 +172,8 @@ mc_ch_in_11k_f6 = "ptbench.data.mc_ch_in_11k.fold_6" ...@@ -217,19 +172,8 @@ mc_ch_in_11k_f6 = "ptbench.data.mc_ch_in_11k.fold_6"
mc_ch_in_11k_f7 = "ptbench.data.mc_ch_in_11k.fold_7" mc_ch_in_11k_f7 = "ptbench.data.mc_ch_in_11k.fold_7"
mc_ch_in_11k_f8 = "ptbench.data.mc_ch_in_11k.fold_8" mc_ch_in_11k_f8 = "ptbench.data.mc_ch_in_11k.fold_8"
mc_ch_in_11k_f9 = "ptbench.data.mc_ch_in_11k.fold_9" mc_ch_in_11k_f9 = "ptbench.data.mc_ch_in_11k.fold_9"
mc_ch_in_11k_f0_rgb = "ptbench.data.mc_ch_in_11k.fold_0_rgb"
mc_ch_in_11k_f1_rgb = "ptbench.data.mc_ch_in_11k.fold_1_rgb"
mc_ch_in_11k_f2_rgb = "ptbench.data.mc_ch_in_11k.fold_2_rgb"
mc_ch_in_11k_f3_rgb = "ptbench.data.mc_ch_in_11k.fold_3_rgb"
mc_ch_in_11k_f4_rgb = "ptbench.data.mc_ch_in_11k.fold_4_rgb"
mc_ch_in_11k_f5_rgb = "ptbench.data.mc_ch_in_11k.fold_5_rgb"
mc_ch_in_11k_f6_rgb = "ptbench.data.mc_ch_in_11k.fold_6_rgb"
mc_ch_in_11k_f7_rgb = "ptbench.data.mc_ch_in_11k.fold_7_rgb"
mc_ch_in_11k_f8_rgb = "ptbench.data.mc_ch_in_11k.fold_8_rgb"
mc_ch_in_11k_f9_rgb = "ptbench.data.mc_ch_in_11k.fold_9_rgb"
# montgomery-shenzhen-indian-tbx11kv2 aggregated dataset # montgomery-shenzhen-indian-tbx11kv2 aggregated dataset
mc_ch_in_11kv2 = "ptbench.data.mc_ch_in_11kv2.default" mc_ch_in_11kv2 = "ptbench.data.mc_ch_in_11kv2.default"
mc_ch_in_11kv2_rgb = "ptbench.data.mc_ch_in_11kv2.rgb"
mc_ch_in_11kv2_f0 = "ptbench.data.mc_ch_in_11kv2.fold_0" mc_ch_in_11kv2_f0 = "ptbench.data.mc_ch_in_11kv2.fold_0"
mc_ch_in_11kv2_f1 = "ptbench.data.mc_ch_in_11kv2.fold_1" mc_ch_in_11kv2_f1 = "ptbench.data.mc_ch_in_11kv2.fold_1"
mc_ch_in_11kv2_f2 = "ptbench.data.mc_ch_in_11kv2.fold_2" mc_ch_in_11kv2_f2 = "ptbench.data.mc_ch_in_11kv2.fold_2"
...@@ -240,16 +184,6 @@ mc_ch_in_11kv2_f6 = "ptbench.data.mc_ch_in_11kv2.fold_6" ...@@ -240,16 +184,6 @@ mc_ch_in_11kv2_f6 = "ptbench.data.mc_ch_in_11kv2.fold_6"
mc_ch_in_11kv2_f7 = "ptbench.data.mc_ch_in_11kv2.fold_7" mc_ch_in_11kv2_f7 = "ptbench.data.mc_ch_in_11kv2.fold_7"
mc_ch_in_11kv2_f8 = "ptbench.data.mc_ch_in_11kv2.fold_8" mc_ch_in_11kv2_f8 = "ptbench.data.mc_ch_in_11kv2.fold_8"
mc_ch_in_11kv2_f9 = "ptbench.data.mc_ch_in_11kv2.fold_9" mc_ch_in_11kv2_f9 = "ptbench.data.mc_ch_in_11kv2.fold_9"
mc_ch_in_11kv2_f0_rgb = "ptbench.data.mc_ch_in_11kv2.fold_0_rgb"
mc_ch_in_11kv2_f1_rgb = "ptbench.data.mc_ch_in_11kv2.fold_1_rgb"
mc_ch_in_11kv2_f2_rgb = "ptbench.data.mc_ch_in_11kv2.fold_2_rgb"
mc_ch_in_11kv2_f3_rgb = "ptbench.data.mc_ch_in_11kv2.fold_3_rgb"
mc_ch_in_11kv2_f4_rgb = "ptbench.data.mc_ch_in_11kv2.fold_4_rgb"
mc_ch_in_11kv2_f5_rgb = "ptbench.data.mc_ch_in_11kv2.fold_5_rgb"
mc_ch_in_11kv2_f6_rgb = "ptbench.data.mc_ch_in_11kv2.fold_6_rgb"
mc_ch_in_11kv2_f7_rgb = "ptbench.data.mc_ch_in_11kv2.fold_7_rgb"
mc_ch_in_11kv2_f8_rgb = "ptbench.data.mc_ch_in_11kv2.fold_8_rgb"
mc_ch_in_11kv2_f9_rgb = "ptbench.data.mc_ch_in_11kv2.fold_9_rgb"
# tbpoc dataset (and cross-validation folds) # tbpoc dataset (and cross-validation folds)
tbpoc_f0 = "ptbench.data.tbpoc.fold_0" tbpoc_f0 = "ptbench.data.tbpoc.fold_0"
tbpoc_f1 = "ptbench.data.tbpoc.fold_1" tbpoc_f1 = "ptbench.data.tbpoc.fold_1"
...@@ -261,16 +195,6 @@ tbpoc_f6 = "ptbench.data.tbpoc.fold_6" ...@@ -261,16 +195,6 @@ tbpoc_f6 = "ptbench.data.tbpoc.fold_6"
tbpoc_f7 = "ptbench.data.tbpoc.fold_7" tbpoc_f7 = "ptbench.data.tbpoc.fold_7"
tbpoc_f8 = "ptbench.data.tbpoc.fold_8" tbpoc_f8 = "ptbench.data.tbpoc.fold_8"
tbpoc_f9 = "ptbench.data.tbpoc.fold_9" tbpoc_f9 = "ptbench.data.tbpoc.fold_9"
tbpoc_f0_rgb = "ptbench.data.tbpoc.fold_0_rgb"
tbpoc_f1_rgb = "ptbench.data.tbpoc.fold_1_rgb"
tbpoc_f2_rgb = "ptbench.data.tbpoc.fold_2_rgb"
tbpoc_f3_rgb = "ptbench.data.tbpoc.fold_3_rgb"
tbpoc_f4_rgb = "ptbench.data.tbpoc.fold_4_rgb"
tbpoc_f5_rgb = "ptbench.data.tbpoc.fold_5_rgb"
tbpoc_f6_rgb = "ptbench.data.tbpoc.fold_6_rgb"
tbpoc_f7_rgb = "ptbench.data.tbpoc.fold_7_rgb"
tbpoc_f8_rgb = "ptbench.data.tbpoc.fold_8_rgb"
tbpoc_f9_rgb = "ptbench.data.tbpoc.fold_9_rgb"
# hivtb dataset (and cross-validation folds) # hivtb dataset (and cross-validation folds)
hivtb_f0 = "ptbench.data.hivtb.fold_0" hivtb_f0 = "ptbench.data.hivtb.fold_0"
hivtb_f1 = "ptbench.data.hivtb.fold_1" hivtb_f1 = "ptbench.data.hivtb.fold_1"
...@@ -282,19 +206,8 @@ hivtb_f6 = "ptbench.data.hivtb.fold_6" ...@@ -282,19 +206,8 @@ hivtb_f6 = "ptbench.data.hivtb.fold_6"
hivtb_f7 = "ptbench.data.hivtb.fold_7" hivtb_f7 = "ptbench.data.hivtb.fold_7"
hivtb_f8 = "ptbench.data.hivtb.fold_8" hivtb_f8 = "ptbench.data.hivtb.fold_8"
hivtb_f9 = "ptbench.data.hivtb.fold_9" hivtb_f9 = "ptbench.data.hivtb.fold_9"
hivtb_f0_rgb = "ptbench.data.hivtb.fold_0_rgb"
hivtb_f1_rgb = "ptbench.data.hivtb.fold_1_rgb"
hivtb_f2_rgb = "ptbench.data.hivtb.fold_2_rgb"
hivtb_f3_rgb = "ptbench.data.hivtb.fold_3_rgb"
hivtb_f4_rgb = "ptbench.data.hivtb.fold_4_rgb"
hivtb_f5_rgb = "ptbench.data.hivtb.fold_5_rgb"
hivtb_f6_rgb = "ptbench.data.hivtb.fold_6_rgb"
hivtb_f7_rgb = "ptbench.data.hivtb.fold_7_rgb"
hivtb_f8_rgb = "ptbench.data.hivtb.fold_8_rgb"
hivtb_f9_rgb = "ptbench.data.hivtb.fold_9_rgb"
# montgomery-shenzhen-indian-padchest aggregated dataset # montgomery-shenzhen-indian-padchest aggregated dataset
mc_ch_in_pc = "ptbench.data.mc_ch_in_pc.default" mc_ch_in_pc = "ptbench.data.mc_ch_in_pc.default"
mc_ch_in_pc_rgb = "ptbench.data.mc_ch_in_pc.rgb"
# NIH CXR14 (relabeled) # NIH CXR14 (relabeled)
nih_cxr14 = "ptbench.data.nih_cxr14_re.default" nih_cxr14 = "ptbench.data.nih_cxr14_re.default"
nih_cxr14_cm = "ptbench.data.nih_cxr14_re.cardiomegaly" nih_cxr14_cm = "ptbench.data.nih_cxr14_re.cardiomegaly"
...@@ -304,7 +217,6 @@ nih_cxr14_pc_idiap = "ptbench.data.nih_cxr14_re_pc.idiap" ...@@ -304,7 +217,6 @@ nih_cxr14_pc_idiap = "ptbench.data.nih_cxr14_re_pc.idiap"
padchest_idiap = "ptbench.data.padchest.idiap" padchest_idiap = "ptbench.data.padchest.idiap"
padchest_tb_idiap = "ptbench.data.padchest.tb_idiap" padchest_tb_idiap = "ptbench.data.padchest.tb_idiap"
padchest_no_tb_idiap = "ptbench.data.padchest.no_tb_idiap" padchest_no_tb_idiap = "ptbench.data.padchest.no_tb_idiap"
padchest_tb_idiap_rgb = "ptbench.data.padchest.tb_idiap_rgb"
padchest_cm_idiap = "ptbench.data.padchest.cardiomegaly_idiap" padchest_cm_idiap = "ptbench.data.padchest.cardiomegaly_idiap"
[tool.setuptools] [tool.setuptools]
......
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Indian dataset for TB detection (default protocol, converted in RGB)
* Split reference: [INDIAN-2013]_ with 20% of train set for the validation set
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.indian` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Aggregated dataset composed of Montgomery and Shenzhen (RGB) datasets."""
from clapper.logging import setup
from torch.utils.data.dataset import ConcatDataset
from .. import return_subsets
from ..base_datamodule import BaseDataModule, get_dataset_from_module
from ..montgomery.rgb import datamodule as mc_datamodule
from ..shenzhen.rgb import datamodule as ch_datamodule
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
self.train_batch_size = train_batch_size
self.predict_batch_size = predict_batch_size
self.drop_incomplete_batch = drop_incomplete_batch
self.multiproc_kwargs = multiproc_kwargs
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
# Instantiate other datamodules and get their datasets
module_args = {
"train_batch_size": self.train_batch_size,
"predict_batch_size": self.predict_batch_size,
"drop_incomplete_batch": self.drop_incomplete_batch,
"multiproc_kwargs": self.multiproc_kwargs,
}
mc = get_dataset_from_module(mc_datamodule, stage, **module_args)
ch = get_dataset_from_module(ch_datamodule, stage, **module_args)
# Combine datasets
self.dataset = {}
self.dataset["__train__"] = ConcatDataset(
[mc["__train__"], ch["__train__"]]
)
self.dataset["train"] = ConcatDataset([mc["train"], ch["train"]])
self.dataset["__valid__"] = ConcatDataset(
[mc["__valid__"], ch["__valid__"]]
)
self.dataset["validation"] = ConcatDataset(
[mc["validation"], ch["validation"]]
)
self.dataset["test"] = ConcatDataset([mc["test"], ch["test"]])
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Aggregated dataset composed of Montgomery, Shenzhen and Indian (RGB)
datasets."""
from clapper.logging import setup
from torch.utils.data.dataset import ConcatDataset
from .. import return_subsets
from ..base_datamodule import BaseDataModule, get_dataset_from_module
from ..indian.rgb import datamodule as indian_datamodule
from ..montgomery.rgb import datamodule as mc_datamodule
from ..shenzhen.rgb import datamodule as ch_datamodule
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
self.train_batch_size = train_batch_size
self.predict_batch_size = predict_batch_size
self.drop_incomplete_batch = drop_incomplete_batch
self.multiproc_kwargs = multiproc_kwargs
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
# Instantiate other datamodules and get their datasets
module_args = {
"train_batch_size": self.train_batch_size,
"predict_batch_size": self.predict_batch_size,
"drop_incomplete_batch": self.drop_incomplete_batch,
"multiproc_kwargs": self.multiproc_kwargs,
}
mc = get_dataset_from_module(mc_datamodule, stage, **module_args)
ch = get_dataset_from_module(ch_datamodule, stage, **module_args)
indian = get_dataset_from_module(
indian_datamodule, stage, **module_args
)
# Combine datasets
self.dataset = {}
self.dataset["__train__"] = ConcatDataset(
[mc["__train__"], ch["__train__"], indian["__train__"]]
)
self.dataset["train"] = ConcatDataset(
[mc["train"], ch["train"], indian["train"]]
)
self.dataset["__valid__"] = ConcatDataset(
[mc["__valid__"], ch["__valid__"], indian["__valid__"]]
)
self.dataset["validation"] = ConcatDataset(
[mc["validation"], ch["validation"], indian["validation"]]
)
self.dataset["test"] = ConcatDataset(
[mc["test"], ch["test"], indian["test"]]
)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Aggregated dataset composed of Montgomery, Shenzhen, Indian and the default
TBX11K-simplified datasets (RGB)"""
from clapper.logging import setup
from torch.utils.data.dataset import ConcatDataset
from .. import return_subsets
from ..base_datamodule import BaseDataModule, get_dataset_from_module
from ..indian.rgb import datamodule as indian_datamodule
from ..montgomery.rgb import datamodule as mc_datamodule
from ..shenzhen.rgb import datamodule as ch_datamodule
from ..tbx11k_simplified.rgb import datamodule as tbx11k_datamodule
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
self.train_batch_size = train_batch_size
self.predict_batch_size = predict_batch_size
self.drop_incomplete_batch = drop_incomplete_batch
self.multiproc_kwargs = multiproc_kwargs
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
# Instantiate other datamodules and get their datasets
module_args = {
"train_batch_size": self.train_batch_size,
"predict_batch_size": self.predict_batch_size,
"drop_incomplete_batch": self.drop_incomplete_batch,
"multiproc_kwargs": self.multiproc_kwargs,
}
mc = get_dataset_from_module(mc_datamodule, stage, **module_args)
ch = get_dataset_from_module(ch_datamodule, stage, **module_args)
indian = get_dataset_from_module(
indian_datamodule, stage, **module_args
)
tbx11k = get_dataset_from_module(
tbx11k_datamodule, stage, **module_args
)
# Combine datasets
self.dataset = {}
self.dataset["__train__"] = ConcatDataset(
[
mc["__train__"],
ch["__train__"],
indian["__train__"],
tbx11k["__train__"],
]
)
self.dataset["train"] = ConcatDataset(
[mc["train"], ch["train"], indian["train"], tbx11k["train"]]
)
self.dataset["__valid__"] = ConcatDataset(
[
mc["__valid__"],
ch["__valid__"],
indian["__valid__"],
tbx11k["__valid__"],
]
)
self.dataset["validation"] = ConcatDataset(
[
mc["validation"],
ch["validation"],
indian["validation"],
tbx11k["validation"],
]
)
self.dataset["test"] = ConcatDataset(
[mc["test"], ch["test"], indian["test"], tbx11k["test"]]
)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Aggregated dataset composed of Montgomery, Shenzhen, Indian and the default
TBX11K-simplified datasets (RGB)"""
from clapper.logging import setup
from torch.utils.data.dataset import ConcatDataset
from .. import return_subsets
from ..base_datamodule import BaseDataModule, get_dataset_from_module
from ..indian.rgb import datamodule as indian_datamodule
from ..montgomery.rgb import datamodule as mc_datamodule
from ..shenzhen.rgb import datamodule as ch_datamodule
from ..tbx11k_simplified_v2.rgb import datamodule as tbx11kv2_datamodule
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
self.train_batch_size = train_batch_size
self.predict_batch_size = predict_batch_size
self.drop_incomplete_batch = drop_incomplete_batch
self.multiproc_kwargs = multiproc_kwargs
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
# Instantiate other datamodules and get their datasets
module_args = {
"train_batch_size": self.train_batch_size,
"predict_batch_size": self.predict_batch_size,
"drop_incomplete_batch": self.drop_incomplete_batch,
"multiproc_kwargs": self.multiproc_kwargs,
}
mc = get_dataset_from_module(mc_datamodule, stage, **module_args)
ch = get_dataset_from_module(ch_datamodule, stage, **module_args)
indian = get_dataset_from_module(
indian_datamodule, stage, **module_args
)
tbx11kv2 = get_dataset_from_module(
tbx11kv2_datamodule, stage, **module_args
)
# Combine datasets
self.dataset = {}
self.dataset["__train__"] = ConcatDataset(
[
mc["__train__"],
ch["__train__"],
indian["__train__"],
tbx11kv2["__train__"],
]
)
self.dataset["train"] = ConcatDataset(
[mc["train"], ch["train"], indian["train"], tbx11kv2["train"]]
)
self.dataset["__valid__"] = ConcatDataset(
[
mc["__valid__"],
ch["__valid__"],
indian["__valid__"],
tbx11kv2["__valid__"],
]
)
self.dataset["validation"] = ConcatDataset(
[
mc["validation"],
ch["validation"],
indian["validation"],
tbx11kv2["validation"],
]
)
self.dataset["test"] = ConcatDataset(
[mc["test"], ch["test"], indian["test"], tbx11kv2["test"]]
)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Aggregated dataset composed of Montgomery, Shenzhen, Indian and Padchest
(RGB) datasets."""
from clapper.logging import setup
from torch.utils.data.dataset import ConcatDataset
from .. import return_subsets
from ..base_datamodule import BaseDataModule, get_dataset_from_module
from ..indian.rgb import datamodule as indian_datamodule
from ..montgomery.rgb import datamodule as mc_datamodule
from ..padchest.tb_idiap_rgb import datamodule as pc_datamodule
from ..shenzhen.rgb import datamodule as ch_datamodule
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
self.train_batch_size = train_batch_size
self.predict_batch_size = predict_batch_size
self.drop_incomplete_batch = drop_incomplete_batch
self.multiproc_kwargs = multiproc_kwargs
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
# Instantiate other datamodules and get their datasets
module_args = {
"train_batch_size": self.train_batch_size,
"predict_batch_size": self.predict_batch_size,
"drop_incomplete_batch": self.drop_incomplete_batch,
"multiproc_kwargs": self.multiproc_kwargs,
}
mc = get_dataset_from_module(mc_datamodule, stage, **module_args)
ch = get_dataset_from_module(ch_datamodule, stage, **module_args)
indian = get_dataset_from_module(
indian_datamodule, stage, **module_args
)
pc = get_dataset_from_module(pc_datamodule, stage, **module_args)
# Combine datasets
self.dataset = {}
self.dataset["__train__"] = ConcatDataset(
[
mc["__train__"],
ch["__train__"],
indian["__train__"],
pc["__train__"],
]
)
self.dataset["train"] = ConcatDataset(
[mc["train"], ch["train"], indian["train"], pc["train"]]
)
self.dataset["__valid__"] = ConcatDataset(
[
mc["__valid__"],
ch["__valid__"],
indian["__valid__"],
pc["__valid__"],
]
)
self.dataset["test"] = ConcatDataset(
[mc["test"], ch["test"], indian["test"], pc["test"]]
)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Padchest tuberculosis (idiap protocol, rgb) dataset for computer-aided
diagnosis.
The 125 healthy images are the first 125 padchest images with the following
parameters: Label = "Normal", MethodLabel = "Physician", Projection = "PA"
* Split reference: first 80% of TB and healthy CXR for "train", rest for "test"
* See :py:mod:`ptbench.data.padchest` for dataset details
* This configuration resolution: 224 x 224 (default)
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("tb_idiap", resize_size=256, cc_size=224)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (default protocol)
* Split reference: first 62.5% of TB and healthy CXR for "train" 15.9% for
* "validation", 21.6% for "test"
* This split only consists of healthy and active TB samples
* "Latent TB" or "sick & non-TB" samples are not included in this configuration
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_simplified` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (default protocol, converted in
RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of non-TB and active TB samples
* "healthy", "latent TB", and "sick & non-TB" samples are all merged under the label "non-TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_simplified_v2` for dataset details
"""
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker
logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment