Skip to content
Snippets Groups Projects
Commit 5126fce7 authored by Daniel CARRON's avatar Daniel CARRON :b: Committed by André Anjos
Browse files

Moved indian configs to data

parent 5677728b
No related branches found
No related tags found
1 merge request!6Making use of LightningDataModule and simplification of data loading
Showing
with 852 additions and 74 deletions
...@@ -140,7 +140,7 @@ shenzhen_f7_rgb = "ptbench.data.shenzhen.fold_7_rgb" ...@@ -140,7 +140,7 @@ shenzhen_f7_rgb = "ptbench.data.shenzhen.fold_7_rgb"
shenzhen_f8_rgb = "ptbench.data.shenzhen.fold_8_rgb" shenzhen_f8_rgb = "ptbench.data.shenzhen.fold_8_rgb"
shenzhen_f9_rgb = "ptbench.data.shenzhen.fold_9_rgb" shenzhen_f9_rgb = "ptbench.data.shenzhen.fold_9_rgb"
# extended shenzhen dataset (with radiological signs) # extended shenzhen dataset (with radiological signs)
shenzhen_rs = "ptbench.configs.datasets.shenzhen_RS.default" shenzhen_rs = "ptbench.data.shenzhen_RS.default"
shenzhen_rs_f0 = "ptbench.configs.datasets.shenzhen_RS.fold_0" shenzhen_rs_f0 = "ptbench.configs.datasets.shenzhen_RS.fold_0"
shenzhen_rs_f1 = "ptbench.configs.datasets.shenzhen_RS.fold_1" shenzhen_rs_f1 = "ptbench.configs.datasets.shenzhen_RS.fold_1"
shenzhen_rs_f2 = "ptbench.configs.datasets.shenzhen_RS.fold_2" shenzhen_rs_f2 = "ptbench.configs.datasets.shenzhen_RS.fold_2"
...@@ -153,27 +153,27 @@ shenzhen_rs_f8 = "ptbench.configs.datasets.shenzhen_RS.fold_8" ...@@ -153,27 +153,27 @@ shenzhen_rs_f8 = "ptbench.configs.datasets.shenzhen_RS.fold_8"
shenzhen_rs_f9 = "ptbench.configs.datasets.shenzhen_RS.fold_9" shenzhen_rs_f9 = "ptbench.configs.datasets.shenzhen_RS.fold_9"
# indian dataset (and cross-validation folds) # indian dataset (and cross-validation folds)
indian = "ptbench.data.indian.default" indian = "ptbench.data.indian.default"
indian_rgb = "ptbench.configs.datasets.indian.rgb" indian_rgb = "ptbench.data.indian.rgb"
indian_f0 = "ptbench.configs.datasets.indian.fold_0" indian_f0 = "ptbench.data.indian.fold_0"
indian_f1 = "ptbench.configs.datasets.indian.fold_1" indian_f1 = "ptbench.data.indian.fold_1"
indian_f2 = "ptbench.configs.datasets.indian.fold_2" indian_f2 = "ptbench.data.indian.fold_2"
indian_f3 = "ptbench.configs.datasets.indian.fold_3" indian_f3 = "ptbench.data.indian.fold_3"
indian_f4 = "ptbench.configs.datasets.indian.fold_4" indian_f4 = "ptbench.data.indian.fold_4"
indian_f5 = "ptbench.configs.datasets.indian.fold_5" indian_f5 = "ptbench.data.indian.fold_5"
indian_f6 = "ptbench.configs.datasets.indian.fold_6" indian_f6 = "ptbench.data.indian.fold_6"
indian_f7 = "ptbench.configs.datasets.indian.fold_7" indian_f7 = "ptbench.data.indian.fold_7"
indian_f8 = "ptbench.configs.datasets.indian.fold_8" indian_f8 = "ptbench.data.indian.fold_8"
indian_f9 = "ptbench.configs.datasets.indian.fold_9" indian_f9 = "ptbench.data.indian.fold_9"
indian_f0_rgb = "ptbench.configs.datasets.indian.fold_0_rgb" indian_f0_rgb = "ptbench.data.indian.fold_0_rgb"
indian_f1_rgb = "ptbench.configs.datasets.indian.fold_1_rgb" indian_f1_rgb = "ptbench.data.indian.fold_1_rgb"
indian_f2_rgb = "ptbench.configs.datasets.indian.fold_2_rgb" indian_f2_rgb = "ptbench.data.indian.fold_2_rgb"
indian_f3_rgb = "ptbench.configs.datasets.indian.fold_3_rgb" indian_f3_rgb = "ptbench.data.indian.fold_3_rgb"
indian_f4_rgb = "ptbench.configs.datasets.indian.fold_4_rgb" indian_f4_rgb = "ptbench.data.indian.fold_4_rgb"
indian_f5_rgb = "ptbench.configs.datasets.indian.fold_5_rgb" indian_f5_rgb = "ptbench.data.indian.fold_5_rgb"
indian_f6_rgb = "ptbench.configs.datasets.indian.fold_6_rgb" indian_f6_rgb = "ptbench.data.indian.fold_6_rgb"
indian_f7_rgb = "ptbench.configs.datasets.indian.fold_7_rgb" indian_f7_rgb = "ptbench.data.indian.fold_7_rgb"
indian_f8_rgb = "ptbench.configs.datasets.indian.fold_8_rgb" indian_f8_rgb = "ptbench.data.indian.fold_8_rgb"
indian_f9_rgb = "ptbench.configs.datasets.indian.fold_9_rgb" indian_f9_rgb = "ptbench.data.indian.fold_9_rgb"
# extended indian dataset (with radiological signs) # extended indian dataset (with radiological signs)
indian_rs = "ptbench.configs.datasets.indian_RS.default" indian_rs = "ptbench.configs.datasets.indian_RS.default"
indian_rs_f0 = "ptbench.configs.datasets.indian_RS.fold_0" indian_rs_f0 = "ptbench.configs.datasets.indian_RS.fold_0"
...@@ -187,28 +187,28 @@ indian_rs_f7 = "ptbench.configs.datasets.indian_RS.fold_7" ...@@ -187,28 +187,28 @@ indian_rs_f7 = "ptbench.configs.datasets.indian_RS.fold_7"
indian_rs_f8 = "ptbench.configs.datasets.indian_RS.fold_8" indian_rs_f8 = "ptbench.configs.datasets.indian_RS.fold_8"
indian_rs_f9 = "ptbench.configs.datasets.indian_RS.fold_9" indian_rs_f9 = "ptbench.configs.datasets.indian_RS.fold_9"
# TBX11K simplified dataset split 1 (and cross-validation folds) # TBX11K simplified dataset split 1 (and cross-validation folds)
tbx11k_simplified = "ptbench.configs.datasets.tbx11k_simplified.default" tbx11k_simplified = "ptbench.data.tbx11k_simplified.default"
tbx11k_simplified_rgb = "ptbench.configs.datasets.tbx11k_simplified.rgb" tbx11k_simplified_rgb = "ptbench.data.tbx11k_simplified.rgb"
tbx11k_simplified_f0 = "ptbench.configs.datasets.tbx11k_simplified.fold_0" tbx11k_simplified_f0 = "ptbench.data.tbx11k_simplified.fold_0"
tbx11k_simplified_f1 = "ptbench.configs.datasets.tbx11k_simplified.fold_1" tbx11k_simplified_f1 = "ptbench.data.tbx11k_simplified.fold_1"
tbx11k_simplified_f2 = "ptbench.configs.datasets.tbx11k_simplified.fold_2" tbx11k_simplified_f2 = "ptbench.data.tbx11k_simplified.fold_2"
tbx11k_simplified_f3 = "ptbench.configs.datasets.tbx11k_simplified.fold_3" tbx11k_simplified_f3 = "ptbench.data.tbx11k_simplified.fold_3"
tbx11k_simplified_f4 = "ptbench.configs.datasets.tbx11k_simplified.fold_4" tbx11k_simplified_f4 = "ptbench.data.tbx11k_simplified.fold_4"
tbx11k_simplified_f5 = "ptbench.configs.datasets.tbx11k_simplified.fold_5" tbx11k_simplified_f5 = "ptbench.data.tbx11k_simplified.fold_5"
tbx11k_simplified_f6 = "ptbench.configs.datasets.tbx11k_simplified.fold_6" tbx11k_simplified_f6 = "ptbench.data.tbx11k_simplified.fold_6"
tbx11k_simplified_f7 = "ptbench.configs.datasets.tbx11k_simplified.fold_7" tbx11k_simplified_f7 = "ptbench.data.tbx11k_simplified.fold_7"
tbx11k_simplified_f8 = "ptbench.configs.datasets.tbx11k_simplified.fold_8" tbx11k_simplified_f8 = "ptbench.data.tbx11k_simplified.fold_8"
tbx11k_simplified_f9 = "ptbench.configs.datasets.tbx11k_simplified.fold_9" tbx11k_simplified_f9 = "ptbench.data.tbx11k_simplified.fold_9"
tbx11k_simplified_f0_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_0_rgb" tbx11k_simplified_f0_rgb = "ptbench.data.tbx11k_simplified.fold_0_rgb"
tbx11k_simplified_f1_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_1_rgb" tbx11k_simplified_f1_rgb = "ptbench.data.tbx11k_simplified.fold_1_rgb"
tbx11k_simplified_f2_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_2_rgb" tbx11k_simplified_f2_rgb = "ptbench.data.tbx11k_simplified.fold_2_rgb"
tbx11k_simplified_f3_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_3_rgb" tbx11k_simplified_f3_rgb = "ptbench.data.tbx11k_simplified.fold_3_rgb"
tbx11k_simplified_f4_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_4_rgb" tbx11k_simplified_f4_rgb = "ptbench.data.tbx11k_simplified.fold_4_rgb"
tbx11k_simplified_f5_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_5_rgb" tbx11k_simplified_f5_rgb = "ptbench.data.tbx11k_simplified.fold_5_rgb"
tbx11k_simplified_f6_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_6_rgb" tbx11k_simplified_f6_rgb = "ptbench.data.tbx11k_simplified.fold_6_rgb"
tbx11k_simplified_f7_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_7_rgb" tbx11k_simplified_f7_rgb = "ptbench.data.tbx11k_simplified.fold_7_rgb"
tbx11k_simplified_f8_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_8_rgb" tbx11k_simplified_f8_rgb = "ptbench.data.tbx11k_simplified.fold_8_rgb"
tbx11k_simplified_f9_rgb = "ptbench.configs.datasets.tbx11k_simplified.fold_9_rgb" tbx11k_simplified_f9_rgb = "ptbench.data.tbx11k_simplified.fold_9_rgb"
# extended TBX11K simplified dataset split 1 (with radiological signs) # extended TBX11K simplified dataset split 1 (with radiological signs)
tbx11k_simplified_rs = "ptbench.configs.datasets.tbx11k_simplified_RS.default" tbx11k_simplified_rs = "ptbench.configs.datasets.tbx11k_simplified_RS.default"
tbx11k_simplified_rs_f0 = "ptbench.configs.datasets.tbx11k_simplified_RS.fold_0" tbx11k_simplified_rs_f0 = "ptbench.configs.datasets.tbx11k_simplified_RS.fold_0"
......
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
def _maker(protocol, resize_size=512, cc_size=512, RGB=False):
from torchvision import transforms
from ....data.indian import dataset as raw
from ....data.transforms import ElasticDeformation, RemoveBlackBorders
from .. import make_dataset as mk
post_transforms = []
if RGB:
post_transforms = [
transforms.Lambda(lambda x: x.convert("RGB")),
transforms.ToTensor(),
]
return mk(
[raw.subsets(protocol)],
[
RemoveBlackBorders(),
transforms.Resize(resize_size),
transforms.CenterCrop(cc_size),
],
[ElasticDeformation(p=0.8)],
post_transforms,
)
...@@ -17,6 +17,7 @@ import importlib.resources ...@@ -17,6 +17,7 @@ import importlib.resources
import os import os
from ...utils.rc import load_rc from ...utils.rc import load_rc
from .. import make_dataset
from ..dataset import JSONDataset from ..dataset import JSONDataset
from ..loader import load_pil_baw, make_delayed from ..loader import load_pil_baw, make_delayed
...@@ -50,9 +51,33 @@ def _loader(context, sample): ...@@ -50,9 +51,33 @@ def _loader(context, sample):
return make_delayed(sample, _raw_data_loader) return make_delayed(sample, _raw_data_loader)
dataset = JSONDataset( json_dataset = JSONDataset(
protocols=_protocols, protocols=_protocols,
fieldnames=("data", "label"), fieldnames=("data", "label"),
loader=_loader, loader=_loader,
) )
"""Indian dataset object.""" """Indian dataset object."""
def _maker(protocol, resize_size=512, cc_size=512, RGB=False):
from torchvision import transforms
from ..transforms import ElasticDeformation, RemoveBlackBorders
post_transforms = []
if RGB:
post_transforms = [
transforms.Lambda(lambda x: x.convert("RGB")),
transforms.ToTensor(),
]
return make_dataset(
[json_dataset.subsets(protocol)],
[
RemoveBlackBorders(),
transforms.Resize(resize_size),
transforms.CenterCrop(cc_size),
],
[ElasticDeformation(p=0.8)],
post_transforms,
)
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("default") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class DefaultModule(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("default")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = DefaultModule
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_0") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_0")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_0", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_0", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_1") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_1")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_1", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_1", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_2") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_2")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_2", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_2", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_3") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_3")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_3", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_3", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_4") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_4")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_4", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_4", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_5") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_5")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_5", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_5", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_6") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_6")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_6", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_6", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_7") logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_7")
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
...@@ -9,6 +9,38 @@ ...@@ -9,6 +9,38 @@
* See :py:mod:`ptbench.data.indian` for dataset details * See :py:mod:`ptbench.data.indian` for dataset details
""" """
from clapper.logging import setup
from .. import return_subsets
from ..base_datamodule import BaseDataModule
from . import _maker from . import _maker
dataset = _maker("fold_7", RGB=True) logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
class Fold0Module(BaseDataModule):
def __init__(
self,
train_batch_size=1,
predict_batch_size=1,
drop_incomplete_batch=False,
multiproc_kwargs=None,
):
super().__init__(
train_batch_size=train_batch_size,
predict_batch_size=predict_batch_size,
drop_incomplete_batch=drop_incomplete_batch,
multiproc_kwargs=multiproc_kwargs,
)
def setup(self, stage: str):
self.dataset = _maker("fold_7", RGB=True)
(
self.train_dataset,
self.validation_dataset,
self.extra_validation_datasets,
self.predict_dataset,
) = return_subsets(self.dataset)
datamodule = Fold0Module
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment