Skip to content
Snippets Groups Projects
Commit 42726879 authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

[tbx11k] Implements database, improves documentation

parent 9b6d7386
No related branches found
No related tags found
1 merge request!6Making use of LightningDataModule and simplification of data loading
Pipeline #76661 failed
Showing
with 50843 additions and 24 deletions
...@@ -117,31 +117,31 @@ indian-f7 = "ptbench.data.indian.fold_7" ...@@ -117,31 +117,31 @@ indian-f7 = "ptbench.data.indian.fold_7"
indian-f8 = "ptbench.data.indian.fold_8" indian-f8 = "ptbench.data.indian.fold_8"
indian-f9 = "ptbench.data.indian.fold_9" indian-f9 = "ptbench.data.indian.fold_9"
# TBX11K simplified dataset split 1 (and cross-validation folds) # TBX11K dataset split 1: healthy vs active tb, and cross-validation folds
tbx11k_simplified = "ptbench.data.tbx11k_simplified.default" tbx11k-v1-healthy-vs-atb = "ptbench.data.tbx11k.v1_healthy_vs_atb"
tbx11k_simplified_f0 = "ptbench.data.tbx11k_simplified.fold_0" tbx11k-v1-f0 = "ptbench.data.tbx11k.v1_fold_0"
tbx11k_simplified_f1 = "ptbench.data.tbx11k_simplified.fold_1" tbx11k-v1-f1 = "ptbench.data.tbx11k.v1_fold_1"
tbx11k_simplified_f2 = "ptbench.data.tbx11k_simplified.fold_2" tbx11k-v1-f2 = "ptbench.data.tbx11k.v1_fold_2"
tbx11k_simplified_f3 = "ptbench.data.tbx11k_simplified.fold_3" tbx11k-v1-f3 = "ptbench.data.tbx11k.v1_fold_3"
tbx11k_simplified_f4 = "ptbench.data.tbx11k_simplified.fold_4" tbx11k-v1-f4 = "ptbench.data.tbx11k.v1_fold_4"
tbx11k_simplified_f5 = "ptbench.data.tbx11k_simplified.fold_5" tbx11k-v1-f5 = "ptbench.data.tbx11k.v1_fold_5"
tbx11k_simplified_f6 = "ptbench.data.tbx11k_simplified.fold_6" tbx11k-v1-f6 = "ptbench.data.tbx11k.v1_fold_6"
tbx11k_simplified_f7 = "ptbench.data.tbx11k_simplified.fold_7" tbx11k-v1-f7 = "ptbench.data.tbx11k.v1_fold_7"
tbx11k_simplified_f8 = "ptbench.data.tbx11k_simplified.fold_8" tbx11k-v1-f8 = "ptbench.data.tbx11k.v1_fold_8"
tbx11k_simplified_f9 = "ptbench.data.tbx11k_simplified.fold_9" tbx11k-v1-f9 = "ptbench.data.tbx11k.v1_fold_9"
# TBX11K simplified dataset split 2 (and cross-validation folds) # TBX11K dataset split 2: others vs active tb, and cross-validation folds
tbx11k_simplified_v2 = "ptbench.data.tbx11k_simplified_v2.default" tbx11k-v2-others-vs-atb = "ptbench.data.tbx11k.v2_others_vs_atb"
tbx11k_simplified_v2_f0 = "ptbench.data.tbx11k_simplified_v2.fold_0" tbx11k-v2-f0 = "ptbench.data.tbx11k.v2_fold_0"
tbx11k_simplified_v2_f1 = "ptbench.data.tbx11k_simplified_v2.fold_1" tbx11k-v2-f1 = "ptbench.data.tbx11k.v2_fold_1"
tbx11k_simplified_v2_f2 = "ptbench.data.tbx11k_simplified_v2.fold_2" tbx11k-v2-f2 = "ptbench.data.tbx11k.v2_fold_2"
tbx11k_simplified_v2_f3 = "ptbench.data.tbx11k_simplified_v2.fold_3" tbx11k-v2-f3 = "ptbench.data.tbx11k.v2_fold_3"
tbx11k_simplified_v2_f4 = "ptbench.data.tbx11k_simplified_v2.fold_4" tbx11k-v2-f4 = "ptbench.data.tbx11k.v2_fold_4"
tbx11k_simplified_v2_f5 = "ptbench.data.tbx11k_simplified_v2.fold_5" tbx11k-v2-f5 = "ptbench.data.tbx11k.v2_fold_5"
tbx11k_simplified_v2_f6 = "ptbench.data.tbx11k_simplified_v2.fold_6" tbx11k-v2-f6 = "ptbench.data.tbx11k.v2_fold_6"
tbx11k_simplified_v2_f7 = "ptbench.data.tbx11k_simplified_v2.fold_7" tbx11k-v2-f7 = "ptbench.data.tbx11k.v2_fold_7"
tbx11k_simplified_v2_f8 = "ptbench.data.tbx11k_simplified_v2.fold_8" tbx11k-v2-f8 = "ptbench.data.tbx11k.v2_fold_8"
tbx11k_simplified_v2_f9 = "ptbench.data.tbx11k_simplified_v2.fold_9" tbx11k-v2-f9 = "ptbench.data.tbx11k.v2_fold_9"
# montgomery-shenzhen aggregated dataset # montgomery-shenzhen aggregated dataset
montgomery-shenzhen = "ptbench.data.montgomery_shenzhen.default" montgomery-shenzhen = "ptbench.data.montgomery_shenzhen.default"
......
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
import importlib.resources
import os
import PIL.Image
from torchvision.transforms.functional import to_tensor
from ...utils.rc import load_rc
from ..datamodule import CachingDataModule
from ..split import JSONDatabaseSplit
from ..typing import DatabaseSplit
from ..typing import RawDataLoader as _BaseRawDataLoader
from ..typing import Sample
DatabaseSample = (
tuple[str, int] | tuple[str, int, list[tuple[int, int, int, int, int]]]
)
"""Type of objects in our JSON representation for this database.
For healthy/sick (no TB)/latent TB cases, each sample is represented by a
filename, followed by the number 0 (negative class).
For active TB cases, each sample is represented by a filename, followed by the
number 1, and then 1 or more 5-tuples with radiological finding locations. The
radiological findings are defined as such:
* 0/1: Signs of latent TB (0), or active TB (1)
* xmin
* ymin
* width
* height
"""
class RawDataLoader(_BaseRawDataLoader):
"""A specialized raw-data-loader for the TBX11k dataset.
Attributes
----------
datadir
This variable contains the base directory where the database raw data
is stored.
"""
datadir: str
def __init__(self):
self.datadir = load_rc().get(
"datadir.tbx11k", os.path.realpath(os.curdir)
)
def sample(self, sample: DatabaseSample) -> Sample:
"""Loads a single image sample from the disk.
Parameters
----------
sample:
A tuple containing the path suffix, within the dataset root folder,
where to find the image to be loaded, an integer, representing the
sample label, and possible radiological findings represented by
bounding boxes.
Returns
-------
sample
The sample representation
"""
image = PIL.Image.open(os.path.join(self.datadir, sample[0]))
tensor = to_tensor(image)
# use the code below to view generated images
# from torchvision.transforms.functional import to_pil_image
# to_pil_image(tensor).show()
# __import__("pdb").set_trace()
return tensor, dict(label=sample[1], name=sample[0]) # type: ignore[arg-type]
def label(self, sample: DatabaseSample) -> int:
"""Loads a single image sample label from the disk.
Parameters
----------
sample:
A tuple containing the path suffix, within the dataset root folder,
where to find the image to be loaded, an integer, representing the
sample label, and possible radiological findings represented by
bounding boxes.
Returns
-------
label
The integer label associated with the sample
"""
return sample[1]
def make_split(basename: str) -> DatabaseSplit:
"""Returns a database split for the Montgomery database."""
return JSONDatabaseSplit(
importlib.resources.files(__name__.rsplit(".", 1)[0]).joinpath(basename)
)
class DataModule(CachingDataModule):
"""TBX11k dataset for TB detection.
* Database reference: [TBX11K-2020]_
* The original dataset contains samples of healthy, sick (no TB), active
and latent TB cases. There is a total of 11702 samples in the database.
Healthy and sick individuals are kept in separate folders. Latent and
active TB cases are merged in the same directory. One must check the
radiological annotations to understand if samples contain either, or both
(latent and active TB) signs.
* There is one case of patient (file ``imgs/tb/tb1199.png``), that is
inside the ``tb`` folder, but contains no annotations. This sample was
**excluded** from our splits.
* There are 30 cases of patients that have both active and latent TB
radiological signs, over the entire database. Those samples were also
**excluded** from our splits:
- imgs/tb/tb0135.png
- imgs/tb/tb0142.png
- imgs/tb/tb0154.png
- imgs/tb/tb0167.png
- imgs/tb/tb0190.png
- imgs/tb/tb0246.png
- imgs/tb/tb0255.png
- imgs/tb/tb0279.png
- imgs/tb/tb0284.png
- imgs/tb/tb0350.png
- imgs/tb/tb0378.png
- imgs/tb/tb0392.png
- imgs/tb/tb0395.png
- imgs/tb/tb0501.png
- imgs/tb/tb0506.png
- imgs/tb/tb0526.png
- imgs/tb/tb0543.png
- imgs/tb/tb0639.png
- imgs/tb/tb0640.png
- imgs/tb/tb0667.png
- imgs/tb/tb0676.png
- imgs/tb/tb0713.png
- imgs/tb/tb0786.png
- imgs/tb/tb0870.png
- imgs/tb/tb0875.png
- imgs/tb/tb0945.png
- imgs/tb/tb0949.png
- imgs/tb/tb0968.png
- imgs/tb/tb1104.png
- imgs/tb/tb1143.png
- Original train dataset samples:
- Healthy: 3000
- Sick (but no TB): 3000
- Active TB only: 473
- Latent TB only: 103
- Both active and latent TB: 23
- Unknown: 1
- Total: 6600
- Original validation dataset samples:
- Healthy: 800
- Sick (but no TB): 800
- Latent TB only: 36
- Active TB only: 157
- Both active and latent TB: 7
- Total: 1800
- Original test dataset samples:
- Unknown: 3302
- Total: 3302
* Because the test set does not have annotations, we generate train,
validation and test datasets as such:
- The original validation dataset becomes our test set.
- The original train dataset is split into new train and validation
datasets (validation ratio = 0.203 w.r.t. original train dataset size).
The selection of samples is stratified (see comments through our split
code, which is shipped alongside this file.)
* Split v1 contains healthy subjects against active TB cases (total samples
= 4430):
- ``train`` dataset samples:
- Healthy: 2390
- Active TB only: 377
- Total: 2767
- ``validation`` dataset samples:
- Healthy: 610
- Active TB only: 96
- Total: 706
- ``test`` dataset samples:
- Healthy: 800
- Active TB only: 157
- Total: 957
* Split v2 contains healthy, sick (no TB), and latent TB subjects against
active TB cases (total samples = 8369):
- ``train`` dataset samples:
- Healthy: 4864
- Active TB only: 377
- Total: 5241
- ``validation`` dataset samples:
- Active TB only: 96
- Healthy: 1239
- Total: 1335
- ``test`` dataset samples:
- Healthy: 1636
- Active TB only: 157
- Total: 1793
Data specifications:
* Raw data input (on disk):
* PNG images 8 bits RGB
* Resolution: 512x512 pixels
* Output image:
* Transforms:
* Load raw PNG with :py:mod:`PIL`
* Final specifications:
* RGB, encoded as a 3-plane image, 8 bits
* Square (512x512 px)
"""
def __init__(self, split_filename: str):
super().__init__(
database_split=make_split(split_filename),
raw_data_loader=RawDataLoader(),
)
#!/usr/bin/env python3
"""Converts TBX11k JSON annotation files into simplified JSON datasets for
ptbench.
Requires ``datadir.tbx11k`` to be set on your configuration file, or that you
are sitting at the root directory of the database.
Because the test set does not have annotations, we generate train, validation
and test datasets as such:
1. The original validation set becomes the test set.
2. The original training set is split into new training and validation
sets (validation ration = 0.203 by default). The selection of samples is
stratified (respects class proportions in Özgür's way - see comments through
the code.)
Our output format is the following:
.. code:: json
{
"train": [
[
<filename-from-root>,
# label is one of:
# 0: healthy / 1: active-tb / 2: active-and-latent-tb
# 3: latent-tb / 4: sick (no tb)
<label>, [
# bounding-box annotations follow. Box-labels are:
# 0: latent-tb sign / 1: active-tb sign
[<box-label>, <xmin>, <ymin>, <width>, <height>],
[0, <xmin>, <ymin>, <width>, <height>],
[1, <xmin>, <ymin>, <width>, <height>],
...
],
],
...
],
"validation": [
# same format as for train
...
]
"test": [
# same format as for train
...
]
"""
import collections
import json
import os
import pathlib
import sys
import typing
from sklearn.model_selection import StratifiedKFold, train_test_split
def reorder(data: dict) -> list:
"""Reorders data from TBX11K into a sample-based organisation."""
categories = {k["id"]: k["name"] for k in data["categories"]}
assert len(set(categories.values())) == len(
categories
), "Category ids are not unique"
# reset category values, so latent-tb = 0, and active-tb = 1
cat_translator = {
"ActiveTuberculosis": 1,
"ObsoletePulmonaryTuberculosis": 0,
"PulmonaryTuberculosis": 2, # this should NOT exist anywhere!
}
categories = {k: cat_translator[v] for k, v in categories.items()}
images = {k["id"]: k["file_name"] for k in data["images"]}
assert len(set(images.values())) == len(images), "Image ids are not unique"
retval: dict[str, list[typing.Any]] = {
k["file_name"]: [-1] for k in data["images"]
}
# we now "consume" all annotations and assign each to an image
for annotation in data["annotations"]:
int_bbox: list[int] = [
categories[annotation["category_id"]],
*[round(k) for k in annotation["bbox"]],
]
retval[images[annotation["image_id"]]].append(int_bbox)
return sorted([["imgs/" + k, *v] for k, v in retval.items()])
def normalize_labels(data: list) -> list:
"""Decides on the final labels for each sample.
Categories are decided on the following principles:
0: healthy, no other bounding box detected, comes from the imgs/health
subdir
1: active-tb, no latent tb, comes from the imgs/tb subdir, has one or more
bounding boxes with label 1, and no bounding box with label 0
2: active-tb and latent tb, comes from the imgs/tb subdir, has one or more
bounding boxes with label 1 and one or more with label 0
3: latent tb, comes from the imgs/tb subdir, has one or more
bounding boxes with label 0 and no bounding box with label 1
4: sick (but no tb), comes from the imgs/sick subdir, does not have any
annotated bounding box.
"""
def _set_label(s: list) -> int:
if s[0].startswith("imgs/health"):
assert (
len(s) == 2
), f"Image {s[0]} is healthy, but contains tb bbox annotations"
return 0 # patient is healthy
elif s[0].startswith("imgs/sick"):
assert (
len(s) == 2
), f"Image {s[0]} is sick (no tb), but contains tb bbox annotations"
return 4 # patient is sick
elif s[0].startswith("imgs/tb"):
if len(s) == 2:
print(
f"WARNING: Image {s[0]} is from the tb subdir, "
f"but contains no tb bbox annotations"
)
return -1 # unknown diagnosis
bbx_labels: list[int] = [k[0] for k in s[2:]]
tb_counts = collections.Counter(bbx_labels)
assert 2 not in tb_counts, (
f"Label 2 (PulmonaryTuberculosis) was used in image {s[0]} "
f"- please check!"
)
if 0 in tb_counts:
if 1 not in tb_counts:
return 3 # patient has latent tb
else:
print(
f"WARNING: Image {s[0]} has bboxes with both "
f"active and latent tb."
)
return 2 # patient has active and latent tb
else: # 1 in tb_counts:
assert 0 not in tb_counts # cannot really happen, but check...
return 1 # patient has only active tb
else:
raise RuntimeError("Cannot happen - please check")
return [[k[0], _set_label(k), *k[2:]] for k in data]
def print_statistics(d: dict):
"""Print some statistics about the dataset."""
label_translations = {
-1: "Unknown",
0: "Healthy",
1: "Active TB only",
2: "Both active and latent TB",
3: "Latent TB only",
4: "Sick (but no TB)",
}
def _print_dataset(ds: list):
"""Print stats only for the dataset."""
class_count = collections.Counter([k[1] for k in ds])
for k, v in class_count.items():
print(f" - {label_translations[k]}: {v}")
print(f" - Total: {len(ds)}")
print("Training set statistics:")
_print_dataset(d["train"])
print("\nValidation set statistics:")
_print_dataset(d["validation"])
print("\nTest set statistics:")
_print_dataset(d["test"])
total_samples = sum(len(ds) for ds in d.values())
print(f"\nTotal samples in database: {total_samples}")
def create_v1_default_split(d: dict, seed: int, validation_size: float) -> dict:
"""In the v1 split, we consider active-tb cases against healthy.
Because the test set is not annotated we do the following:
1. The original validation set becomes the test set.
2. The original training set is split into new training and validation
sets. The selection of samples is stratified (respects class
proportions in Özgür's way - see comments)
Parameters
----------
d
The original dataset that will be split
seed
The seed to use at the relevant RNG
validation_size
The proportion of data when we split the training set to make a
train and validation sets.
"""
# filter cases (only interested in labels 0:healthy or 1:active-tb)
use_data = {
"train": [k for k in d["train"] if k[1] in (0, 1)],
"validation": [k for k in d["validation"] if k[1] in (0, 1)],
}
# Required to repeat Özgür's heuristic with labels that reverse somehow the
# sorting for "no_tb" (instead of 0), and "active_tb" (instead of 1).
# Reversing the labels used in the stratification process solves this
# issue.
targets = {0: 1, 1: 0}
train, val = train_test_split(
use_data["train"],
test_size=validation_size,
random_state=seed,
stratify=[targets[k[1]] for k in use_data["train"]],
)
return {
"train": train,
"validation": val,
"test": use_data["validation"],
}
def create_v2_default_split(d: dict, seed: int, validation_size) -> dict:
"""In the v2 split, we consider active-tb cases against healthy, sick and
latent-tb cases.
Because the test set is not annotated we do the following:
1. The original validation set becomes the test set.
2. The original training set is split into new training and validation
sets. The selection of samples is stratified (respects class
proportions in Özgür's way - see comments)
"""
# filter cases (only interested in labels 0:healthy or 1:active-tb)
use_data = {
"train": [k for k in d["train"] if k[1] in (0, 1, 3, 4)],
"validation": [k for k in d["validation"] if k[1] in (0, 1, 3, 4)],
}
# Required to repeat Özgür's heuristic with labels that reverse somehow the
# sorting for "no_tb" (instead of 0, 3 or 4), and "active_tb" (instead of
# 1). Reversing the labels used in the stratification process solves this
# issue.
targets = {0: 1, 1: 0, 3: 1, 4: 1}
train, val = train_test_split(
use_data["train"],
test_size=validation_size,
random_state=seed,
stratify=[targets[k[1]] for k in use_data["train"]],
)
# These are the targets that will show up in the split. We make everything
# that is not active-tb to be label=0.
split_targets = {0: 0, 1: 1, 3: 0, 4: 0}
return {
"train": [[k[0], split_targets[k[1]], *k[2:]] for k in train],
"validation": [[k[0], split_targets[k[1]], *k[2:]] for k in val],
"test": [
[k[0], split_targets[k[1]], *k[2:]] for k in use_data["validation"]
],
}
def create_folds(
d: dict, n: int, seed: int, validation_size: float
) -> list[dict]:
"""Creates folds from existing splits.
Parameters
----------
d
The original split to consider
n
The number of folds to produce
Returns
-------
folds
All the ``n`` folds
"""
X = d["train"] + d["validation"] + d["test"]
y = [[k[1]] for k in X]
# Initializes a StratifiedKFold object with 10 folds
skf = StratifiedKFold(n_splits=n, shuffle=True, random_state=seed)
# Required to repeat Özgür's heuristic with labels that reverse somehow the
# sorting for "no_tb" (instead of 0), and "active_tb" (instead of 1).
# Reversing the labels used in the stratification process solves this
# issue.
targets = {0: 1, 1: 0}
# Loops over the 10 folds and split the data
retval = []
for train_idx, test_idx in skf.split(X, y):
# Get the training and test data for this fold
train_dataset = [X[k] for k in train_idx]
test_dataset = [X[k] for k in test_idx]
# Split the training data into training and validation sets
train_dataset, val_dataset = train_test_split(
train_dataset,
test_size=validation_size,
random_state=seed,
stratify=[targets[k[1]] for k in train_dataset],
)
retval.append(
{
"train": train_dataset,
"validation": val_dataset,
"test": test_dataset,
}
)
return retval
def main():
if len(sys.argv) != 1:
print(__doc__)
print(f"Usage: python3 {sys.argv[0]} ")
sys.exit(0)
# program constants used by Özgür
seed = 42 # used to seed the relevant RNG
validation_size = 0.203 # proportion for test when splitting
n_folds = 10 # number of folds to create
from clapper.rc import UserDefaults
datadir = pathlib.Path(
UserDefaults("ptbench.toml").get(
"datadir.tbx11k", os.path.realpath(os.curdir)
)
)
train_filename = datadir / "annotations" / "json" / "TBX11K_train.json"
val_filename = datadir / "annotations" / "json" / "TBX11K_val.json"
test_filename = datadir / "annotations" / "json" / "all_test.json"
with open(train_filename) as f:
print(f"Loading {str(train_filename)}...")
data = json.load(f)
train_data = normalize_labels(reorder(data))
with open(val_filename) as f:
print(f"Loading {str(val_filename)}...")
data = json.load(f)
val_data = normalize_labels(reorder(data))
with open(test_filename) as f:
print(f"Loading {str(test_filename)}...")
data = json.load(f)
test_data = reorder(data)
final_data = {
"train": train_data,
"validation": val_data,
"test": test_data,
}
print_statistics(final_data)
# No need to record the re-processed data.
# with open(sys.argv[4], "w") as fout:
# json.dump(final_data, fout, indent=2)
print("\nGenerating v1 split...")
v1_split = create_v1_default_split(
final_data, seed=seed, validation_size=validation_size
)
print_statistics(v1_split)
with open("v1-healthy-vs-atb.json", "w") as v1def:
json.dump(v1_split, v1def, indent=2)
# folds for the v1 split
print(f"\nGenerating {n_folds} v1 split folds...")
v1_folds = create_folds(
v1_split, n=n_folds, seed=seed, validation_size=validation_size
)
for i, k in enumerate(v1_folds):
with open(f"v1-fold-{i}.json", "w") as v1fold:
json.dump(k, v1fold, indent=2)
print("\nGenerating v2 split...")
v2_split = create_v2_default_split(
final_data, seed=seed, validation_size=validation_size
)
print_statistics(v2_split)
with open("v2-others-vs-atb.json", "w") as v2def:
json.dump(v2_split, v2def, indent=2)
# folds for the v2 split
print(f"\nGenerating {n_folds} v2 split folds...")
v2_folds = create_folds(
v2_split, n=n_folds, seed=seed, validation_size=validation_size
)
for i, k in enumerate(v2_folds):
with open(f"v2-fold-{i}.json", "w") as v2fold:
json.dump(k, v2fold, indent=2)
if __name__ == "__main__":
main()
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
from .datamodule import DataModule
datamodule = DataModule("v1-fold-0.json")
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
from .datamodule import DataModule
datamodule = DataModule("v1-fold-1.json")
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
from .datamodule import DataModule
datamodule = DataModule("v1-fold-2.json")
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
from .datamodule import DataModule
datamodule = DataModule("v1-fold-3.json")
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
from .datamodule import DataModule
datamodule = DataModule("v1-fold-4.json")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment