Skip to content
Snippets Groups Projects
Commit 1c1a1a56 authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

[various] Fix multiple import errors after rebase

parent c8c63bcc
No related branches found
No related tags found
1 merge request!46Create common library
Pipeline #89259 canceled
This diff is collapsed.
...@@ -48,6 +48,7 @@ dependencies = [ ...@@ -48,6 +48,7 @@ dependencies = [
"tensorboard", "tensorboard",
"torchvision~=0.17.2", "torchvision~=0.17.2",
"torch~=2.2.2", "torch~=2.2.2",
"torchio",
"tqdm", "tqdm",
"versioningit", "versioningit",
] ]
...@@ -104,7 +105,7 @@ tensorboard = "*" ...@@ -104,7 +105,7 @@ tensorboard = "*"
torchvision = { version = "~=0.17.2", channel = "pytorch" } torchvision = { version = "~=0.17.2", channel = "pytorch" }
tqdm = "*" tqdm = "*"
versioningit = "*" versioningit = "*"
torchio = ">=0.19.7,<0.20" torchio = "*"
[tool.pixi.feature.self.pypi-dependencies] [tool.pixi.feature.self.pypi-dependencies]
mednet = { path = ".", editable = true } mednet = { path = ".", editable = true }
...@@ -248,7 +249,7 @@ densenet = "mednet.libs.classification.config.models.densenet" ...@@ -248,7 +249,7 @@ densenet = "mednet.libs.classification.config.models.densenet"
densenet-pretrained = "mednet.libs.classification.config.models.densenet_pretrained" densenet-pretrained = "mednet.libs.classification.config.models.densenet_pretrained"
# 3D models # 3D models
cnn3d = "mednet.config.models.cnn3d" cnn3d = "mednet.libs.classification.config.models.cnn3d"
# lists of data augmentations # lists of data augmentations
affine = "mednet.libs.common.config.augmentations.affine" affine = "mednet.libs.common.config.augmentations.affine"
......
...@@ -3,12 +3,11 @@ ...@@ -3,12 +3,11 @@
# SPDX-License-Identifier: GPL-3.0-or-later # SPDX-License-Identifier: GPL-3.0-or-later
"""VISCERAL dataset for 3D organ classification. """VISCERAL dataset for 3D organ classification.
Database reference: See
:py:class:`mednet.libs.classification.config.data.visceral.datamodule.DataModule`
See :py:class:`mednet.config.data.visceral.datamodule.DataModule` for for technical details.
technical details.
""" """
from mednet.config.data.visceral.datamodule import DataModule from mednet.libs.classification.config.data.visceral.datamodule import DataModule
datamodule = DataModule("default.json") datamodule = DataModule("default.json")
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> # SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
# #
# SPDX-License-Identifier: GPL-3.0-or-later # SPDX-License-Identifier: GPL-3.0-or-later
"""Simple CNN for 3D organ classification, to be trained from scratch.""" """Simple CNN for 3D image classification, to be trained from scratch."""
from mednet.models.cnn3d import Conv3DNet from mednet.libs.classification.models.cnn3d import Conv3DNet
from torch.nn import BCEWithLogitsLoss from torch.nn import BCEWithLogitsLoss
from torch.optim import Adam from torch.optim import Adam
......
...@@ -14,7 +14,7 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") ...@@ -14,7 +14,7 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
@click.command( @click.command(
entry_point_group="mednet.config", entry_point_group="mednet.libs.classification.config",
cls=ConfigCommand, cls=ConfigCommand,
epilog="""Examples: epilog="""Examples:
......
...@@ -14,7 +14,7 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") ...@@ -14,7 +14,7 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
@click.command( @click.command(
entry_point_group="mednet.config", entry_point_group="mednet.libs.segmentation.config",
cls=ConfigCommand, cls=ConfigCommand,
epilog="""Examples: epilog="""Examples:
......
...@@ -115,7 +115,7 @@ def test_split_consistency(name: str, tbx11k_name: str): ...@@ -115,7 +115,7 @@ def test_split_consistency(name: str, tbx11k_name: str):
def test_batch_uniformity(tbx11k_name: str, dataset: str): def test_batch_uniformity(tbx11k_name: str, dataset: str):
combined = importlib.import_module( combined = importlib.import_module(
f".{tbx11k_name}", f".{tbx11k_name}",
"mednet.config.data.montgomery_shenzhen_indian_tbx11k", "mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k",
).datamodule ).datamodule
combined.model_transforms = [] # should be done before setup() combined.model_transforms = [] # should be done before setup()
......
...@@ -28,7 +28,7 @@ def test_protocol_consistency( ...@@ -28,7 +28,7 @@ def test_protocol_consistency(
from mednet.libs.common.data.split import make_split from mednet.libs.common.data.split import make_split
database_checkers.check_split( database_checkers.check_split(
make_split("mednet.config.data.visceral", f"{split}.json"), make_split("mednet.libs.classification.config.data.visceral", f"{split}.json"),
lengths=lenghts, lengths=lenghts,
prefixes=("16/10000"), prefixes=("16/10000"),
possible_labels=(0, 1), possible_labels=(0, 1),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment