Skip to content
Snippets Groups Projects
Commit 145e8f74 authored by Daniel CARRON's avatar Daniel CARRON :b: Committed by André Anjos
Browse files

[normalizer] Do not call to super().set_normalizer() as it was moved

parent eb4848f6
No related branches found
No related tags found
1 merge request!46Create common library
......@@ -115,7 +115,13 @@ class Alexnet(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, _):
images = batch[0]
......
......@@ -118,7 +118,13 @@ class Densenet(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, _):
images = batch[0]
......
......@@ -158,7 +158,13 @@ class DRIU(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -161,7 +161,13 @@ class DRIUBN(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -143,7 +143,13 @@ class DRIUOD(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -147,7 +147,13 @@ class DRIUPix(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -162,7 +162,13 @@ class HED(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -210,7 +210,13 @@ class M2UNET(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
......@@ -151,7 +151,13 @@ class Unet(Model):
)
self.normalizer = make_imagenet_normalizer()
else:
super().set_normalizer(dataloader)
from .normalizer import make_z_normalizer
logger.info(
f"Uninitialised {self.name} model - "
f"computing z-norm factors from train dataloader.",
)
self.normalizer = make_z_normalizer(dataloader)
def training_step(self, batch, batch_idx):
images = batch[0]["image"]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment