Skip to content
Snippets Groups Projects
Commit 10d78c5a authored by Daniel CARRON's avatar Daniel CARRON :b: Committed by André Anjos
Browse files

[segmentation.models] Add driu model

parent 0049aab9
No related branches found
No related tags found
1 merge request!46Create common library
...@@ -421,6 +421,8 @@ visceral = "mednet.config.data.visceral.default" ...@@ -421,6 +421,8 @@ visceral = "mednet.config.data.visceral.default"
[project.entry-points."mednet.libs.segmentation.config"] [project.entry-points."mednet.libs.segmentation.config"]
# models
driu = "mednet.libs.segmentation.config.models.driu"
lwnet = "mednet.libs.segmentation.config.models.lwnet" lwnet = "mednet.libs.segmentation.config.models.lwnet"
unet = "mednet.libs.segmentation.config.models.unet" unet = "mednet.libs.segmentation.config.models.unet"
......
# SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Little W-Net for image segmentation.
The Little W-Net architecture contains roughly around 70k parameters and
closely matches (or outperforms) other more complex techniques.
Reference: [GALDRAN-2020]_
"""
from mednet.libs.segmentation.engine.adabound import AdaBound
from mednet.libs.segmentation.models.losses import SoftJaccardBCELogitsLoss
from mednet.libs.segmentation.models.unet import Unet
lr = 0.001
alpha = 0.7
betas = (0.9, 0.999)
eps = 1e-08
weight_decay = 0
final_lr = 0.1
gamma = 1e-3
eps = 1e-8
amsbound = False
model = Unet(
loss_type=SoftJaccardBCELogitsLoss,
loss_arguments=dict(alpha=alpha),
optimizer_type=AdaBound,
optimizer_arguments=dict(
lr=lr,
betas=betas,
final_lr=final_lr,
gamma=gamma,
eps=eps,
weight_decay=weight_decay,
amsbound=amsbound,
),
augmentation_transforms=[],
crop_size=1024,
)
...@@ -13,7 +13,7 @@ from mednet.libs.segmentation.engine.adabound import AdaBound ...@@ -13,7 +13,7 @@ from mednet.libs.segmentation.engine.adabound import AdaBound
from mednet.libs.segmentation.models.losses import SoftJaccardBCELogitsLoss from mednet.libs.segmentation.models.losses import SoftJaccardBCELogitsLoss
from mednet.libs.segmentation.models.unet import Unet from mednet.libs.segmentation.models.unet import Unet
lr = 0.01 # start lr = 0.001
alpha = 0.7 alpha = 0.7
betas = (0.9, 0.999) betas = (0.9, 0.999)
eps = 1e-08 eps = 1e-08
......
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
import logging
import typing
import torch
import torch.nn
from mednet.libs.common.data.typing import TransformSequence
from mednet.libs.common.models.model import Model
from .backbones.vgg import vgg16_for_segmentation
from .losses import SoftJaccardBCELogitsLoss
from .make_layers import UpsampleCropBlock, conv_with_kaiming_uniform
logger = logging.getLogger("mednet")
class ConcatFuseBlock(torch.nn.Module):
"""Takes in four feature maps with 16 channels each, concatenates them and
applies a 1x1 convolution with 1 output channel.
"""
def __init__(self):
super().__init__()
self.conv = conv_with_kaiming_uniform(4 * 16, 1, 1, 1, 0)
def forward(self, x1, x2, x3, x4):
x_cat = torch.cat([x1, x2, x3, x4], dim=1)
return self.conv(x_cat)
class DRIUHead(torch.nn.Module):
"""DRIU head module.
Based on paper by [MANINIS-2016]_.
Parameters
----------
in_channels_list
Number of channels for each feature map that is returned from backbone.
"""
def __init__(self, in_channels_list=None):
super().__init__()
(
in_conv_1_2_16,
in_upsample2,
in_upsample_4,
in_upsample_8,
) = in_channels_list
self.conv1_2_16 = torch.nn.Conv2d(in_conv_1_2_16, 16, 3, 1, 1)
# Upsample layers
self.upsample2 = UpsampleCropBlock(in_upsample2, 16, 4, 2, 0)
self.upsample4 = UpsampleCropBlock(in_upsample_4, 16, 8, 4, 0)
self.upsample8 = UpsampleCropBlock(in_upsample_8, 16, 16, 8, 0)
# Concat and Fuse
self.concatfuse = ConcatFuseBlock()
def forward(self, x):
hw = x[0]
conv1_2_16 = self.conv1_2_16(x[1]) # conv1_2_16
upsample2 = self.upsample2(x[2], hw) # side-multi2-up
upsample4 = self.upsample4(x[3], hw) # side-multi3-up
upsample8 = self.upsample8(x[4], hw) # side-multi4-up
return self.concatfuse(conv1_2_16, upsample2, upsample4, upsample8)
class DRIU(Model):
"""Build DRIU for vessel segmentation by adding backbone and head
together.
Parameters
----------
loss_type
The loss to be used for training and evaluation.
.. warning::
The loss should be set to always return batch averages (as opposed
to the batch sum), as our logging system expects it so.
loss_arguments
Arguments to the loss.
optimizer_type
The type of optimizer to use for training.
optimizer_arguments
Arguments to the optimizer after ``params``.
augmentation_transforms
An optional sequence of torch modules containing transforms to be
applied on the input **before** it is fed into the network.
num_classes
Number of outputs (classes) for this model.
pretrained
If True, will use VGG16 pretrained weights.
Returns
-------
module : :py:class:`torch.nn.Module`
Network model for DRIU (vessel segmentation).
"""
def __init__(
self,
loss_type: torch.nn.Module = SoftJaccardBCELogitsLoss,
loss_arguments: dict[str, typing.Any] = {},
optimizer_type: type[torch.optim.Optimizer] = torch.optim.Adam,
optimizer_arguments: dict[str, typing.Any] = {},
augmentation_transforms: TransformSequence = [],
num_classes: int = 1,
pretrained: bool = False,
):
super().__init__(
loss_type,
loss_arguments,
optimizer_type,
optimizer_arguments,
augmentation_transforms,
num_classes,
)
self.name = "driu"
self.model_transforms: TransformSequence = []
self.pretrained = pretrained
self.backbone = vgg16_for_segmentation(
pretrained=self.pretrained,
return_features=[3, 8, 14, 22],
)
self.head = DRIUHead([64, 128, 256, 512])
def forward(self, x):
if self.normalizer is not None:
x = self.normalizer(x)
x = self.backbone(x)
return self.head(x)
def set_normalizer(self, dataloader: torch.utils.data.DataLoader) -> None:
"""Initialize the normalizer for the current model.
This function is NOOP if ``pretrained = True`` (normalizer set to
imagenet weights, during contruction).
Parameters
----------
dataloader
A torch Dataloader from which to compute the mean and std.
Will not be used if the model is pretrained.
"""
if self.pretrained:
from mednet.libs.common.models.normalizer import make_imagenet_normalizer
logger.warning(
f"ImageNet pre-trained {self.name} model - NOT "
f"computing z-norm factors from train dataloader. "
f"Using preset factors from torchvision.",
)
self.normalizer = make_imagenet_normalizer()
else:
self.normalizer = None
def training_step(self, batch, batch_idx):
images = batch[0]
ground_truths = batch[1]["target"]
masks = batch[1]["mask"]
outputs = self(self._augmentation_transforms(images))
return self._train_loss(outputs, ground_truths, masks)
def validation_step(self, batch, batch_idx):
images = batch[0]
ground_truths = batch[1]["target"]
masks = batch[1]["mask"]
outputs = self(images)
return self._validation_loss(outputs, ground_truths, masks)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment