Skip to content
Snippets Groups Projects
Commit 1099d715 authored by Daniel CARRON's avatar Daniel CARRON :b:
Browse files

Moved alexnet model to lightning

parent 4f3105a7
No related branches found
No related tags found
1 merge request!4Moved code to lightning
......@@ -4,19 +4,19 @@
"""AlexNet."""
from torch import empty
from torch.nn import BCEWithLogitsLoss
from torch.optim import SGD
from ...models.alexnet import build_alexnet
from ...models.alexnet import Alexnet
# config
lr = 0.01
# model
model = build_alexnet(pretrained=False)
optimizer_configs = {"lr": 0.01, "momentum": 0.1}
# optimizer
optimizer = SGD(model.parameters(), lr=lr, momentum=0.1)
optimizer = "SGD"
# criterion
criterion = BCEWithLogitsLoss()
criterion = BCEWithLogitsLoss(pos_weight=empty(1))
criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
# model
model = Alexnet(criterion, criterion_valid, optimizer, optimizer_configs)
......@@ -2,29 +2,45 @@
#
# SPDX-License-Identifier: GPL-3.0-or-later
from collections import OrderedDict
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torchvision.models as models
from .normalizer import TorchVisionNormalizer
class Alexnet(nn.Module):
class Alexnet(pl.LightningModule):
"""Alexnet module.
Note: only usable with a normalized dataset
"""
def __init__(self, pretrained=False):
def __init__(
self,
criterion,
criterion_valid,
optimizer,
optimizer_configs,
pretrained=False,
):
super().__init__()
self.save_hyperparameters()
self.criterion = criterion
self.criterion_valid = criterion_valid
self.name = "AlexNet"
# Load pretrained model
weights = (
None if pretrained is False else models.AlexNet_Weights.DEFAULT
)
self.model_ft = models.alexnet(weights=weights)
self.normalizer = TorchVisionNormalizer(nb_channels=1)
# Adapt output features
self.model_ft.classifier[4] = nn.Linear(4096, 512)
self.model_ft.classifier[6] = nn.Linear(512, 1)
......@@ -44,20 +60,59 @@ class Alexnet(nn.Module):
tensor : :py:class:`torch.Tensor`
"""
return self.model_ft(x)
x = self.normalizer(x)
x = self.model_ft(x)
return x
def build_alexnet(pretrained=False):
"""Build Alexnet CNN.
def training_step(self, batch, batch_idx):
images = batch[1]
labels = batch[2]
Returns
-------
# Increase label dimension if too low
# Allows single and multiclass usage
if labels.ndim == 1:
labels = torch.reshape(labels, (labels.shape[0], 1))
module : :py:class:`torch.nn.Module`
"""
model = Alexnet(pretrained=pretrained)
model = [("normalizer", TorchVisionNormalizer()), ("model", model)]
model = nn.Sequential(OrderedDict(model))
# Forward pass on the network
outputs = self(images)
training_loss = self.criterion(outputs, labels.double())
return {"loss": training_loss}
def validation_step(self, batch, batch_idx):
images = batch[1]
labels = batch[2]
# Increase label dimension if too low
# Allows single and multiclass usage
if labels.ndim == 1:
labels = torch.reshape(labels, (labels.shape[0], 1))
# data forwarding on the existing network
outputs = self(images)
validation_loss = self.criterion_valid(outputs, labels.double())
return {"validation_loss": validation_loss}
def predict_step(self, batch, batch_idx, grad_cams=False):
names = batch[0]
images = batch[1]
outputs = self(images)
probabilities = torch.sigmoid(outputs)
# necessary check for HED architecture that uses several outputs
# for loss calculation instead of just the last concatfuse block
if isinstance(outputs, list):
outputs = outputs[-1]
return names[0], torch.flatten(probabilities), torch.flatten(batch[2])
def configure_optimizers(self):
optimizer = getattr(torch.optim, self.hparams.optimizer)(
self.parameters(), **self.hparams.optimizer_configs
)
model.name = "AlexNet"
return model
return optimizer
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment