Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mednet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
medai
software
mednet
Commits
0a858361
Commit
0a858361
authored
1 year ago
by
Daniel CARRON
Browse files
Options
Downloads
Patches
Plain Diff
Updated accelerator selection during prediction
parent
55f4eac1
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!4
Moved code to lightning
Pipeline
#73168
failed
1 year ago
Stage: qa
Stage: test
Stage: doc
Stage: dist
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/ptbench/engine/predictor.py
+14
-6
14 additions, 6 deletions
src/ptbench/engine/predictor.py
src/ptbench/scripts/predict.py
+10
-6
10 additions, 6 deletions
src/ptbench/scripts/predict.py
with
24 additions
and
12 deletions
src/ptbench/engine/predictor.py
+
14
−
6
View file @
0a858361
...
...
@@ -7,12 +7,13 @@ import os
from
pytorch_lightning
import
Trainer
from
..utils.accelerator
import
AcceleratorProcessor
from
.callbacks
import
PredictionsWriter
logger
=
logging
.
getLogger
(
__name__
)
def
run
(
model
,
data_loader
,
name
,
device
,
output_folder
,
grad_cams
=
False
):
def
run
(
model
,
data_loader
,
name
,
accelerator
,
output_folder
,
grad_cams
=
False
):
"""
Runs inference on input data, outputs HDF5 files with predictions.
Parameters
...
...
@@ -26,8 +27,8 @@ def run(model, data_loader, name, device, output_folder, grad_cams=False):
the local name of this dataset (e.g. ``train``, or ``test``), to be
used when saving measures files.
device
: str
device to use ``cpu`` or ``cuda:0``
accelerator
: str
accelerator to use
output_folder : str
folder where to store output prediction and model
...
...
@@ -48,14 +49,21 @@ def run(model, data_loader, name, device, output_folder, grad_cams=False):
logger
.
info
(
f
"
Output folder:
{
output_folder
}
"
)
os
.
makedirs
(
output_folder
,
exist_ok
=
True
)
logger
.
info
(
f
"
Device:
{
device
}
"
)
accelerator_processor
=
AcceleratorProcessor
(
accelerator
)
if
accelerator_processor
.
device
is
None
:
devices
=
"
auto
"
else
:
devices
=
accelerator_processor
.
device
logger
.
info
(
f
"
Device:
{
devices
}
"
)
logfile_name
=
os
.
path
.
join
(
output_folder
,
"
predictions.csv
"
)
logfile_fields
=
(
"
filename
"
,
"
likelihood
"
,
"
ground_truth
"
)
trainer
=
Trainer
(
accelerator
=
"
au
to
"
,
devices
=
"
auto
"
,
accelerator
=
accelerator_processor
.
accelera
to
r
,
devices
=
devices
,
callbacks
=
[
PredictionsWriter
(
logfile_name
=
logfile_name
,
...
...
This diff is collapsed.
Click to expand it.
src/ptbench/scripts/predict.py
+
10
−
6
View file @
0a858361
...
...
@@ -62,9 +62,9 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
cls
=
ResourceOption
,
)
@click.option
(
"
--
device
"
,
"
-
d
"
,
help
=
'
A string indicating the
device
to use (e.g.
"
cpu
"
or
"
cuda:0
"
)
'
,
"
--
accelerator
"
,
"
-
a
"
,
help
=
'
A string indicating the
accelerator
to use (e.g.
"
auto
"
,
"
cpu
"
or
"
gpu
"
). If auto, will select the best one available
'
,
show_default
=
True
,
required
=
True
,
default
=
"
cpu
"
,
...
...
@@ -98,7 +98,7 @@ def predict(
model
,
dataset
,
batch_size
,
device
,
accelerator
,
weight
,
relevance_analysis
,
grad_cams
,
...
...
@@ -154,7 +154,7 @@ def predict(
pin_memory
=
torch
.
cuda
.
is_available
(),
)
predictions
=
run
(
model
,
data_loader
,
k
,
device
,
output_folder
,
grad_cams
model
,
data_loader
,
k
,
accelerator
,
output_folder
,
grad_cams
)
# Relevance analysis using permutation feature importance
...
...
@@ -189,7 +189,11 @@ def predict(
)
predictions_with_mean
=
run
(
model
,
data_loader
,
k
,
device
,
output_folder
+
"
_temp
"
model
,
data_loader
,
k
,
accelerator
,
output_folder
+
"
_temp
"
,
)
# Compute MSE between original and new predictions
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment