alexnet.py 3.30 KiB
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
import lightning.pytorch as pl
import torch
import torch.nn as nn
import torchvision.models as models
from .normalizer import TorchVisionNormalizer
class Alexnet(pl.LightningModule):
"""Alexnet module.
Note: only usable with a normalized dataset
"""
def __init__(
self,
criterion,
criterion_valid,
optimizer,
optimizer_configs,
pretrained=False,
):
super().__init__()
self.save_hyperparameters(ignore=["criterion", "criterion_valid"])
self.name = "AlexNet"
# Load pretrained model
weights = (
None if pretrained is False else models.AlexNet_Weights.DEFAULT
)
self.model_ft = models.alexnet(weights=weights)
self.normalizer = TorchVisionNormalizer(nb_channels=1)
# Adapt output features
self.model_ft.classifier[4] = nn.Linear(4096, 512)
self.model_ft.classifier[6] = nn.Linear(512, 1)
def forward(self, x):
x = self.normalizer(x)
x = self.model_ft(x)
return x
def training_step(self, batch, batch_idx):
images = batch[1]
labels = batch[2]
# Increase label dimension if too low
# Allows single and multiclass usage
if labels.ndim == 1:
labels = torch.reshape(labels, (labels.shape[0], 1))
# Forward pass on the network
outputs = self(images)
# Manually move criterion to selected device, since not part of the model.
self.hparams.criterion = self.hparams.criterion.to(self.device)
training_loss = self.hparams.criterion(outputs, labels.float())
return {"loss": training_loss}
def validation_step(self, batch, batch_idx, dataloader_idx=0):
images = batch[1]
labels = batch[2]
# Increase label dimension if too low
# Allows single and multiclass usage
if labels.ndim == 1:
labels = torch.reshape(labels, (labels.shape[0], 1))
# data forwarding on the existing network
outputs = self(images)
# Manually move criterion to selected device, since not part of the model.
self.hparams.criterion_valid = self.hparams.criterion_valid.to(
self.device
)
validation_loss = self.hparams.criterion_valid(outputs, labels.float())
if dataloader_idx == 0:
return {"validation_loss": validation_loss}
else:
return {f"extra_validation_loss_{dataloader_idx}": validation_loss}
def predict_step(self, batch, batch_idx, dataloader_idx=0, grad_cams=False):
names = batch[0]
images = batch[1]
outputs = self(images)
probabilities = torch.sigmoid(outputs)
# necessary check for HED architecture that uses several outputs
# for loss calculation instead of just the last concatfuse block
if isinstance(outputs, list):
outputs = outputs[-1]
return names[0], torch.flatten(probabilities), torch.flatten(batch[2])
def configure_optimizers(self):
optimizer = getattr(torch.optim, self.hparams.optimizer)(
self.parameters(), **self.hparams.optimizer_configs
)
return optimizer