Newer
Older
.. SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
..
.. SPDX-License-Identifier: GPL-3.0-or-later
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
============
References
============
.. [MONTGOMERY-SHENZHEN-2014] *Jaeger S, Candemir S, Antani S, Wáng YX, Lu PX,
Thoma G.*, **Two public chest X-ray datasets for computer-aided screening of
pulmonary diseases.**, Quant Imaging Med Surg. 2014;4(6):475‐477.
https://dx.doi.org/10.3978%2Fj.issn.2223-4292.2014.11.20
.. [INDIAN-2013] https://sourceforge.net/projects/tbxpredict/
.. [PASA-2019] *Pasa, F., Golkov, V., Pfeiffer, F. et al.*,
**Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis
Screening and Visualization.** Sci Rep 9, 6268 (2019).
https://doi.org/10.1038/s41598-019-42557-4
.. [SIMARD-2003] *P. Y. Simard, D. Steinkraus and J. C. Platt*,
**Best practices for convolutional neural networks applied to visual
document analysis**, Seventh International Conference on Document Analysis
and Recognition, 2003. Proceedings., Edinburgh, UK, 2003, pp. 958-963.
https://doi.org/10.1109/ICDAR.2003.1227801
.. [CHEXNEXT-2018] *Rajpurkar Pranav, Jeremy Irvin, Robyn L. Ball, Kaylie Zhu,
Brandon Yang, Hershel Mehta, Tony Duan, et al.*, **Deep Learning for Chest
Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm
to Practicing Radiologists**. PLOS Medicine 15, nᵒ 11 (20 november 2018):
e1002686. https://doi.org/10.1371/journal.pmed.1002686
.. [NIH-CXR14-2017] *Xiaosong Wang et al.*, **ChestX-Ray8: Hospital-Scale
Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification
and Localization of Common Thorax Diseases.** 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE,
July 2017, pp. 3462–3471. doi: 10.1109/CVPR.2017.369.
http://ieeexplore.ieee.org/document/8099852/
.. [PADCHEST-2019] *Aurelia Bustos et al.*, **PadChest: A large chest x-ray
image dataset with multi-label annotated reports** Medical Image Analysis,
Volume 66, 2020, 101797, ISSN 1361-8415. doi: 10.1016/j.media.2020.101797.
https://www.sciencedirect.com/science/article/abs/pii/S1361841520301614
.. [TB-POC-2018] *Griesel, Rulan and Stewart, Annemie and van der Plas, Helen
and Sikhondze, Welile and Rangaka, Molebogeng X and Nicol, Mark P and
Kengne, Andre P and Mendelson, Marc and Maartens, Gary*, **Optimizing
Tuberculosis Diagnosis in Human Immunodeficiency Virus–Infected Inpatients
Meeting the Criteria of Seriously Ill in the World Health Organization
Algorithm**, Clinical Infectious Diseases, 2017.
https://doi.org/10.1093/cid/cix988
.. [HIV-TB-2019] *Van Hoving, D. J. et al.*, **Brief report: real-world
performance and interobserver agreement of urine lipoarabinomannan in
diagnosing HIV-Associated tuberculosis in an emergency center.**,
J. Acquir. Immune Defic. Syndr. 1999 81, e10–e14 (2019).
.. [TBX11K-2020] *Liu, Y., Wu, Y.-H., Ban, Y., Wang, H., and Cheng, M.-*,
**Rethinking computer-aided tuberculosis diagnosis.**,
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2646–2655.

André Anjos
committed
.. [SCORECAM-2020] *H. Wang et al.*, **Score-CAM: Score-Weighted Visual
Explanations for Convolutional Neural Networks** 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA,
2020 pp. 111-119. doi: https://doi.org/10.1109/CVPRW50498.2020.00020
.. [ROAD-2022] *Y. Rong, T. Leemann, V. Borisov, G. Kasneci, and E. Kasneci*,
**A Consistent and Efficient Evaluation Strategy for Attribution Methods** in
Proceedings of the 39th International Conference on Machine Learning, PMLR,
Jun. 2022, pp. 18770–18795. https://proceedings.mlr.press/v162/rong22a.html
.. [IGLOVIKOV-2018] *V. Iglovikov, S. Seferbekov, A. Buslaev and A. Shvets*,
**TernausNetV2: Fully Convolutional Network for Instance Segmentation**,
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 228-2284.
https://doi.org/10.1109/CVPRW.2018.00042
.. [XIE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.
1395-1403. https://doi.org/10.1109/ICCV.2015.164
.. [MANINIS-2016] *K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool*,
**Deep Retinal Image Understanding**, in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2016, Cham, 2016, pp. 140–148.
https://doi.org/10.1007/978-3-319-46723-8_17
.. [GALDRAN-2020] *A. Galdran, A. Anjos, J. Dolz, H. Chakor, H. Lombaert, and
I. Ben Ayed*, **The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models**, 2020.
https://arxiv.org/abs/2009.01907
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
.. [JSRT-2000] *J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T.
Kobayashi, K. Komatsu, M. Matsui, H. Fujita, Y. Kodera, K. Doi*,
**Development of a digital image database for chest radiographs with and
without a lung nodule: Receiver operating characteristic analysis of
radiologists’ detection of pulmonary nodules.**, American Journal of
Roentgenology. 2000. https://pubmed.ncbi.nlm.nih.gov/10628457
.. [CXR8-2017] *Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu,
Mohammadhadi Bagheri, Ronald Summers*, **ChestX-ray8: Hospital-scale Chest
X-ray Database and Benchmarks on Weakly-Supervised Classification and
Localization of Common Thorax Diseases.**, IEEE CVPR, pp. 3462-3471, 2017.
https://arxiv.org/abs/1705.02315
.. [GAAL-2020] *G. Gaál, B. Maga, A. Lukács*, **Attention U-Net Based
Adversarial Architectures for Chest X-ray Lung Segmentation.**, 2020.
https://arxiv.org/abs/2003.10304v1
.. [DRISHTIGS1-2014] *J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and
A. U. Syed Tabish*, **Drishti-GS: Retinal image dataset for optic nerve
head (ONH) segmentation**, 2014 IEEE 11th International Symposium on
Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56.
https://doi.org/10.1109/ISBI.2014.6867807
.. [DRIVE-2004] *J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B.
van Ginneken*, **Ridge-based vessel segmentation in color images of the
retina**, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp.
501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627
.. [ORLANDO-2017] *J. I. Orlando, E. Prokofyeva and M. B. Blaschko*, **A
Discriminatively Trained Fully Connected Conditional Random Field Model for
Blood Vessel Segmentation in Fundus Images**, in IEEE Transactions on
Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017.
https://doi.org/10.1109/TBME.2016.2535311
.. [MEYER-2017] *M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A.
Campilho*, **A Deep Neural Network for Vessel Segmentation of Scanning Laser
Ophthalmoscopy Images**, in Image Analysis and Recognition, vol. 10317, F.
Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International
Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56
.. [REFUGE-2018] https://refuge.grand-challenge.org/Details/
.. [CHASEDB1-2012] *M. M. Fraz et al.*, **An Ensemble Classification-Based
Approach Applied to Retinal Blood Vessel Segmentation**, in IEEE
Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept.
2012. https://doi.org/10.1109/TBME.2012.2205687
.. [DRIONSDB-2008] *Enrique J. Carmona, Mariano Rincón, Julián García-Feijoó, José
M. Martínez-de-la-Casa*, **Identification of the optic nerve head with
genetic algorithms**, in Artificial Intelligence in Medicine, Volume 43,
Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005
.. [HRF-2013] *A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson*,
**Robust Vessel Segmentation in Fundus Images**, in International Journal of
Biomedical Imaging, vol. 2013, p. 11, 2013.
http://dx.doi.org/10.1155/2013/154860
.. [IOSTAR-2016] *J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits
and B. M. ter Haar Romeny*, **Robust Retinal Vessel Segmentation via Locally
Adaptive Derivative Frames in Orientation Scores**, in IEEE Transactions on
Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016.
.. [RIMONER3-2015] *F. Fumero, J. Sigut, S. Alayón, M. González-Hernández, M.
González de la Rosa*, **Interactive Tool and Database for Optic Disc and Cup
Segmentation of Stereo and Monocular Retinal Fundus Images**, Conference on
Computer Graphics, Visualization and Computer Vision, 2015.
https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf
.. [STARE-2000] *A. D. Hoover, V. Kouznetsova and M. Goldbaum*, **Locating blood
vessels in retinal images by piecewise threshold probing of a matched filter
response**, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp.
203-210, March 2000. https://doi.org/10.1109/42.845178
.. [SANDLER-2018] *M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen*,
**MobileNetV2: Inverted Residuals and Linear Bottlenecks**, 2018.
https://arxiv.org/abs/1801.04381
.. [RONNEBERGER-2015] *O. Ronneberger, P. Fischer, T. Brox*, **U-Net:
Convolutional Networks for Biomedical Image Segmentation**, 2015.
https://arxiv.org/abs/1505.04597
.. [DRHAGIS-2017] *S. Holm, G. Russell, V. Nourrit, N. McLoughlin*, **DR HAGIS
– A Novel Fundus Image Database for the Automatic Extraction of Retinal
Surface Vessels**, SPIE Journal of Medical Imaging, 2017.
https://doi.org/10.1117/1.jmi.4.1.014503
.. [VISCERAL-2016] *O. Jimenez-del-Toro et al.*, **Cloud-Based Evaluation of
Anatomical Structure Segmentation and Landmark Detection Algorithms:
VISCERAL Anatomy Benchmarks**, IEEE Transactions on Medical Imaging, vol.
35, no. 11, pp. 2459-2475, Nov. 2016, https://doi.org/10.1109/TMI.2016.2578680
.. [ALEXNET-2012] *Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton*,
**ImageNet Classification with Deep Convolutional Neural Networks**,
Advances in Neural Information Processing Systems (NIPS) 25, 2012.
https://doi.org/10.1145/3065386
.. [DENSENET-2017] *G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger*,
**Densely Connected Convolutional Networks**, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.
https://doi.org/10.1109/CVPR.2017.243.
.. [LAIBACHER-2018] *Tim Laibacher, Tillman Weyde, Sepehr Jalali*, **M2U-Net:
Effective and Efficient Retinal Vessel Segmentation for Resource-Constrained
Environments**, 2018. https://doi.org/10.48550/arXiv.1811.07738