Skip to content
Snippets Groups Projects
references.rst 10.5 KiB
Newer Older
.. SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
..
.. SPDX-License-Identifier: GPL-3.0-or-later

============
 References
============

.. [MONTGOMERY-SHENZHEN-2014] *Jaeger S, Candemir S, Antani S, Wáng YX, Lu PX,
   Thoma G.*, **Two public chest X-ray datasets for computer-aided screening of
   pulmonary diseases.**, Quant Imaging Med Surg. 2014;4(6):475‐477.
   https://dx.doi.org/10.3978%2Fj.issn.2223-4292.2014.11.20

.. [INDIAN-2013] https://sourceforge.net/projects/tbxpredict/

.. [PASA-2019] *Pasa, F., Golkov, V., Pfeiffer, F. et al.*,
   **Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis
   Screening and Visualization.** Sci Rep 9, 6268 (2019).
   https://doi.org/10.1038/s41598-019-42557-4

.. [SIMARD-2003] *P. Y. Simard, D. Steinkraus and J. C. Platt*,
   **Best practices for convolutional neural networks applied to visual
   document analysis**, Seventh International Conference on Document Analysis
   and Recognition, 2003. Proceedings., Edinburgh, UK, 2003, pp. 958-963.
   https://doi.org/10.1109/ICDAR.2003.1227801

.. [CHEXNEXT-2018] *Rajpurkar Pranav, Jeremy Irvin, Robyn L. Ball, Kaylie Zhu,
   Brandon Yang, Hershel Mehta, Tony Duan, et al.*, **Deep Learning for Chest
   Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm
   to Practicing Radiologists**. PLOS Medicine 15, nᵒ 11 (20 november 2018):
   e1002686. https://doi.org/10.1371/journal.pmed.1002686

.. [NIH-CXR14-2017] *Xiaosong Wang et al.*, **ChestX-Ray8: Hospital-Scale
   Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification
   and Localization of Common Thorax Diseases.** 2017 IEEE Conference on
   Computer Vision and Pattern Recognition (CVPR). 2017 IEEE Conference on
   Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE,
   July 2017, pp. 3462–3471. doi: 10.1109/CVPR.2017.369.
   http://ieeexplore.ieee.org/document/8099852/

.. [PADCHEST-2019] *Aurelia Bustos et al.*, **PadChest: A large chest x-ray
   image dataset with multi-label annotated reports** Medical Image Analysis,
   Volume 66, 2020, 101797, ISSN 1361-8415. doi: 10.1016/j.media.2020.101797.
   https://www.sciencedirect.com/science/article/abs/pii/S1361841520301614

.. [TB-POC-2018] *Griesel, Rulan and Stewart, Annemie and van der Plas, Helen
   and Sikhondze, Welile and Rangaka, Molebogeng X and Nicol, Mark P and
   Kengne, Andre P and Mendelson, Marc and Maartens, Gary*, **Optimizing
   Tuberculosis Diagnosis in Human Immunodeficiency Virus–Infected Inpatients
   Meeting the Criteria of Seriously Ill in the World Health Organization
   Algorithm**, Clinical Infectious Diseases, 2017.
   https://doi.org/10.1093/cid/cix988

.. [HIV-TB-2019] *Van Hoving, D. J. et al.*, **Brief report: real-world
   performance and interobserver agreement of urine lipoarabinomannan in
   diagnosing HIV-Associated tuberculosis in an emergency center.**,
   J. Acquir. Immune Defic. Syndr. 1999 81, e10–e14 (2019).
.. [TBX11K-2020] *Liu, Y., Wu, Y.-H., Ban, Y., Wang, H., and Cheng, M.-*,
   **Rethinking computer-aided tuberculosis diagnosis.**,
   In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
   Recognition, pages 2646–2655.

.. [SCORECAM-2020] *H. Wang et al.*, **Score-CAM: Score-Weighted Visual
   Explanations for Convolutional Neural Networks** 2020 IEEE/CVF Conference on
   Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA,
   2020 pp. 111-119. doi: https://doi.org/10.1109/CVPRW50498.2020.00020

.. [ROAD-2022] *Y. Rong, T. Leemann, V. Borisov, G. Kasneci, and E. Kasneci*,
   **A Consistent and Efficient Evaluation Strategy for Attribution Methods** in
   Proceedings of the 39th International Conference on Machine Learning, PMLR,
   Jun. 2022, pp. 18770–18795. https://proceedings.mlr.press/v162/rong22a.html

.. [IGLOVIKOV-2018] *V. Iglovikov, S. Seferbekov, A. Buslaev and A. Shvets*,
   **TernausNetV2: Fully Convolutional Network for Instance Segmentation**,
   2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
   Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 228-2284.
   https://doi.org/10.1109/CVPRW.2018.00042

.. [XIE-2015] *S. Xie and Z. Tu*, **Holistically-Nested Edge Detection**, 2015
   IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.
   1395-1403. https://doi.org/10.1109/ICCV.2015.164

.. [MANINIS-2016] *K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool*,
   **Deep Retinal Image Understanding**, in Medical Image Computing and
   Computer-Assisted Intervention – MICCAI 2016, Cham, 2016, pp. 140–148.
   https://doi.org/10.1007/978-3-319-46723-8_17

.. [GALDRAN-2020] *A. Galdran, A. Anjos, J. Dolz, H. Chakor, H. Lombaert, and
   I. Ben Ayed*, **The Little W-Net That Could: State-of-the-Art Retinal Vessel
   Segmentation with Minimalistic Models**, 2020.
   https://arxiv.org/abs/2009.01907

.. [JSRT-2000] *J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T.
   Kobayashi, K. Komatsu, M. Matsui, H. Fujita, Y. Kodera, K. Doi*,
   **Development of a digital image database for chest radiographs with and
   without a lung nodule: Receiver operating characteristic analysis of
   radiologists’ detection of pulmonary nodules.**, American Journal of
   Roentgenology. 2000. https://pubmed.ncbi.nlm.nih.gov/10628457

.. [CXR8-2017] *Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu,
   Mohammadhadi Bagheri, Ronald Summers*, **ChestX-ray8: Hospital-scale Chest
   X-ray Database and Benchmarks on Weakly-Supervised Classification and
   Localization of Common Thorax Diseases.**, IEEE CVPR, pp. 3462-3471, 2017.
   https://arxiv.org/abs/1705.02315

.. [GAAL-2020] *G. Gaál, B. Maga, A. Lukács*, **Attention U-Net Based
   Adversarial Architectures for Chest X-ray Lung Segmentation.**, 2020.
   https://arxiv.org/abs/2003.10304v1

.. [DRISHTIGS1-2014] *J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and
   A. U. Syed Tabish*, **Drishti-GS: Retinal image dataset for optic nerve
   head (ONH) segmentation**, 2014 IEEE 11th International Symposium on
   Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56.
   https://doi.org/10.1109/ISBI.2014.6867807

.. [DRIVE-2004] *J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B.
   van Ginneken*, **Ridge-based vessel segmentation in color images of the
   retina**, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp.
   501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627

.. [ORLANDO-2017] *J. I. Orlando, E. Prokofyeva and M. B. Blaschko*, **A
   Discriminatively Trained Fully Connected Conditional Random Field Model for
   Blood Vessel Segmentation in Fundus Images**, in IEEE Transactions on
   Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017.
   https://doi.org/10.1109/TBME.2016.2535311

.. [MEYER-2017] *M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A.
   Campilho*, **A Deep Neural Network for Vessel Segmentation of Scanning Laser
   Ophthalmoscopy Images**, in Image Analysis and Recognition, vol. 10317, F.
   Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International
   Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56

.. [REFUGE-2018] https://refuge.grand-challenge.org/Details/

.. [CHASEDB1-2012] *M. M. Fraz et al.*, **An Ensemble Classification-Based
   Approach Applied to Retinal Blood Vessel Segmentation**, in IEEE
   Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept.
   2012. https://doi.org/10.1109/TBME.2012.2205687

.. [DRIONSDB-2008] *Enrique J. Carmona, Mariano Rincón, Julián García-Feijoó, José
   M. Martínez-de-la-Casa*, **Identification of the optic nerve head with
   genetic algorithms**, in Artificial Intelligence in Medicine, Volume 43,
   Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005

.. [HRF-2013] *A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson*,
   **Robust Vessel Segmentation in Fundus Images**, in International Journal of
   Biomedical Imaging, vol. 2013, p. 11, 2013.
   http://dx.doi.org/10.1155/2013/154860

.. [IOSTAR-2016] *J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits
   and B. M. ter Haar Romeny*, **Robust Retinal Vessel Segmentation via Locally
   Adaptive Derivative Frames in Orientation Scores**, in IEEE Transactions on
   Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016.

.. [RIMONER3-2015] *F. Fumero, J. Sigut, S. Alayón, M. González-Hernández, M.
   González de la Rosa*, **Interactive Tool and Database for Optic Disc and Cup
   Segmentation of Stereo and Monocular Retinal Fundus Images**, Conference on
   Computer Graphics, Visualization and Computer Vision, 2015.
   https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf

.. [STARE-2000] *A. D. Hoover, V. Kouznetsova and M. Goldbaum*, **Locating blood
   vessels in retinal images by piecewise threshold probing of a matched filter
   response**, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp.
   203-210, March 2000. https://doi.org/10.1109/42.845178

.. [SANDLER-2018] *M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen*,
   **MobileNetV2: Inverted Residuals and Linear Bottlenecks**, 2018.
   https://arxiv.org/abs/1801.04381

.. [RONNEBERGER-2015] *O. Ronneberger, P. Fischer, T. Brox*, **U-Net:
   Convolutional Networks for Biomedical Image Segmentation**, 2015.
   https://arxiv.org/abs/1505.04597

André Anjos's avatar
André Anjos committed
.. [DRHAGIS-2017] *S. Holm, G. Russell, V. Nourrit, N. McLoughlin*, **DR HAGIS
   – A Novel Fundus Image Database for the Automatic Extraction of Retinal
   Surface Vessels**, SPIE Journal of Medical Imaging, 2017.
   https://doi.org/10.1117/1.jmi.4.1.014503

André Anjos's avatar
André Anjos committed
.. [VISCERAL-2016] *O. Jimenez-del-Toro et al.*, **Cloud-Based Evaluation of
   Anatomical Structure Segmentation and Landmark Detection Algorithms:
   VISCERAL Anatomy Benchmarks**, IEEE Transactions on Medical Imaging, vol.
   35, no. 11, pp. 2459-2475, Nov. 2016, https://doi.org/10.1109/TMI.2016.2578680

.. [ALEXNET-2012] *Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton*,
   **ImageNet Classification with Deep Convolutional Neural Networks**,
   Advances in Neural Information Processing Systems (NIPS) 25, 2012.
   https://doi.org/10.1145/3065386

.. [DENSENET-2017] *G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger*,
   **Densely Connected Convolutional Networks**, IEEE Conference on
   Computer Vision and Pattern Recognition (CVPR), 2017.
   https://doi.org/10.1109/CVPR.2017.243.

.. [LAIBACHER-2018] *Tim Laibacher, Tillman Weyde, Sepehr Jalali*, **M2U-Net:
   Effective and Efficient Retinal Vessel Segmentation for Resource-Constrained
   Environments**, 2018. https://doi.org/10.48550/arXiv.1811.07738