Newer
Older
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Tests for our CLI applications."""
import contextlib
import os
import re
import pytest
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from click.testing import CliRunner
@contextlib.contextmanager
def stdout_logging():
# copy logging messages to std out
import io
import logging
buf = io.StringIO()
ch = logging.StreamHandler(buf)
ch.setFormatter(logging.Formatter("%(message)s"))
ch.setLevel(logging.INFO)
logger = logging.getLogger("ptbench")
logger.addHandler(ch)
yield buf
logger.removeHandler(ch)
def _assert_exit_0(result):
assert (
result.exit_code == 0
), f"Exit code {result.exit_code} != 0 -- Output:\n{result.output}"
def _check_help(entry_point):
runner = CliRunner()
result = runner.invoke(entry_point, ["--help"])
_assert_exit_0(result)
assert result.output.startswith("Usage:")
def test_config_help():
from ptbench.scripts.config import config
_check_help(config)
def test_config_list_help():
from ptbench.scripts.config import list
_check_help(list)
def test_config_list():
from ptbench.scripts.config import list
runner = CliRunner()
result = runner.invoke(list)
_assert_exit_0(result)
assert "module: ptbench.configs.datasets" in result.output
assert "module: ptbench.configs.models" in result.output
def test_config_list_v():
from ptbench.scripts.config import list
result = CliRunner().invoke(list, ["--verbose"])
_assert_exit_0(result)
assert "module: ptbench.configs.datasets" in result.output
assert "module: ptbench.configs.models" in result.output
def test_config_describe_help():
from ptbench.scripts.config import describe
_check_help(describe)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def test_config_describe_montgomery():
from ptbench.scripts.config import describe
runner = CliRunner()
result = runner.invoke(describe, ["montgomery"])
_assert_exit_0(result)
assert "Montgomery dataset for TB detection" in result.output
def test_dataset_help():
from ptbench.scripts.dataset import dataset
_check_help(dataset)
def test_dataset_list_help():
from ptbench.scripts.dataset import list
_check_help(list)
def test_dataset_list():
from ptbench.scripts.dataset import list
runner = CliRunner()
result = runner.invoke(list)
_assert_exit_0(result)
assert result.output.startswith("Supported datasets:")
def test_dataset_check_help():
from ptbench.scripts.dataset import check
_check_help(check)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def test_dataset_check():
from ptbench.scripts.dataset import check
runner = CliRunner()
result = runner.invoke(check, ["--verbose", "--limit=2"])
_assert_exit_0(result)
def test_main_help():
from ptbench.scripts.cli import cli
_check_help(cli)
def test_train_help():
from ptbench.scripts.train import train
_check_help(train)
def _str_counter(substr, s):
return sum(1 for _ in re.finditer(substr, s, re.MULTILINE))
def test_predict_help():
from ptbench.scripts.predict import predict
_check_help(predict)
def test_predtojson_help():
from ptbench.scripts.predtojson import predtojson
_check_help(predtojson)
def test_aggregpred_help():
from ptbench.scripts.aggregpred import aggregpred
_check_help(aggregpred)
def test_evaluate_help():
from ptbench.scripts.evaluate import evaluate
_check_help(evaluate)
def test_compare_help():
from ptbench.scripts.compare import compare
_check_help(compare)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
def test_train_pasa_montgomery(temporary_basedir):
from ptbench.scripts.train import train

André Anjos
committed
runner = CliRunner()

André Anjos
committed
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "results")
result = runner.invoke(
train,
[
"pasa",
"montgomery",
"-vv",
"--epochs=1",
"--batch-size=1",
"--normalization=current",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)

André Anjos
committed
assert os.path.exists(

André Anjos
committed
)
assert os.path.exists(
os.path.join(output_folder, "model_lowest_valid_loss.ckpt")

André Anjos
committed
)
assert os.path.exists(os.path.join(output_folder, "constants.csv"))
assert os.path.exists(
os.path.join(output_folder, "logs_csv", "version_0", "metrics.csv")
)
assert os.path.exists(
os.path.join(output_folder, "logs_tensorboard", "version_0")
)

André Anjos
committed
assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
keywords = {
r"^Found \(dedicated\) '__train__' set for training$": 1,
r"^Found \(dedicated\) '__valid__' set for validation$": 1,
r"^Continuing from epoch 0$": 1,
r"^Saving model summary at.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"

André Anjos
committed
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
def test_train_pasa_montgomery_from_checkpoint(temporary_basedir):
from ptbench.scripts.train import train
runner = CliRunner()
output_folder = str(temporary_basedir / "results/pasa_checkpoint")
result0 = runner.invoke(
train,
[
"pasa",
"montgomery",
"-vv",
"--epochs=1",
"--batch-size=1",
"--normalization=current",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result0)
assert os.path.exists(os.path.join(output_folder, "model_final_epoch.ckpt"))
os.path.join(output_folder, "model_lowest_valid_loss.ckpt")
)
assert os.path.exists(os.path.join(output_folder, "constants.csv"))
assert os.path.exists(
os.path.join(output_folder, "logs_csv", "version_0", "metrics.csv")
)
assert os.path.exists(
os.path.join(output_folder, "logs_tensorboard", "version_0")
)
assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
with stdout_logging() as buf:
result = runner.invoke(
train,
[
"pasa",
"montgomery",
"-vv",
"--epochs=2",
"--batch-size=1",
"--normalization=current",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
assert os.path.exists(
os.path.join(output_folder, "model_lowest_valid_loss.ckpt")
)
assert os.path.exists(os.path.join(output_folder, "constants.csv"))
assert os.path.exists(
os.path.join(output_folder, "logs_csv", "version_0", "metrics.csv")
)
assert os.path.exists(
os.path.join(output_folder, "logs_tensorboard", "version_0")
)
assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
keywords = {
r"^Found \(dedicated\) '__train__' set for training$": 1,
r"^Found \(dedicated\) '__valid__' set for validation$": 1,
r"^Saving model summary at.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
# extra_keyword = "Saving checkpoint"
# assert (
# extra_keyword in logging_output
# ), f"String '{extra_keyword}' did not appear at least once in the output:\nOutput:\n{logging_output}"
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
def test_predict_pasa_montgomery(temporary_basedir, datadir):
from ptbench.scripts.predict import predict
runner = CliRunner()
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "predictions")
result = runner.invoke(
predict,
[
"pasa",
"montgomery",
"-vv",
"--batch-size=1",
"--relevance-analysis",
f"--weight={str(datadir / 'lfs' / 'models' / 'pasa.ckpt')}",

André Anjos
committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
# check predictions are there
predictions_file1 = os.path.join(output_folder, "train/predictions.csv")
predictions_file2 = os.path.join(
output_folder, "validation/predictions.csv"
)
predictions_file3 = os.path.join(output_folder, "test/predictions.csv")
assert os.path.exists(predictions_file1)
assert os.path.exists(predictions_file2)
assert os.path.exists(predictions_file3)
keywords = {
r"^Loading checkpoint from.*$": 1,
r"^Relevance analysis.*$": 3,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"

André Anjos
committed
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def test_predtojson(datadir, temporary_basedir):
from ptbench.scripts.predtojson import predtojson
runner = CliRunner()
with stdout_logging() as buf:
predictions = str(datadir / "test_predictions.csv")
output_folder = str(temporary_basedir / "pred_to_json")
result = runner.invoke(
predtojson,
[
"-vv",
"train",
f"{predictions}",
"test",
f"{predictions}",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
# check json file is there
assert os.path.exists(os.path.join(output_folder, "dataset.json"))
keywords = {
f"Output folder: {output_folder}": 1,
r"Saving JSON file...": 1,
r"^Loading predictions from.*$": 2,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"

André Anjos
committed
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def test_evaluate_pasa_montgomery(temporary_basedir):
from ptbench.scripts.evaluate import evaluate
runner = CliRunner()
with stdout_logging() as buf:
prediction_folder = str(temporary_basedir / "predictions")
output_folder = str(temporary_basedir / "evaluations")
result = runner.invoke(
evaluate,
[
"-vv",
"montgomery",
f"--predictions-folder={prediction_folder}",
f"--output-folder={output_folder}",
"--threshold=train",
"--steps=2000",
],
)
_assert_exit_0(result)
# check evaluations are there
assert os.path.exists(os.path.join(output_folder, "test.csv"))
assert os.path.exists(os.path.join(output_folder, "train.csv"))
assert os.path.exists(
os.path.join(output_folder, "test_score_table.pdf")
)
assert os.path.exists(
os.path.join(output_folder, "train_score_table.pdf")
)
keywords = {
r"^Skipping dataset '__train__'": 1,
r"^Evaluating threshold on.*$": 1,
r"^Maximum F1-score of.*$": 4,
r"^Set --f1_threshold=.*$": 1,
r"^Set --eer_threshold=.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def test_compare_pasa_montgomery(temporary_basedir):
from ptbench.scripts.compare import compare
runner = CliRunner()
with stdout_logging() as buf:
predictions_folder = str(temporary_basedir / "predictions")
output_folder = str(temporary_basedir / "comparisons")
result = runner.invoke(
compare,
[
"-vv",
"train",
f"{predictions_folder}/train/predictions.csv",
"test",
f"{predictions_folder}/test/predictions.csv",
f"--output-figure={output_folder}/compare.pdf",
f"--output-table={output_folder}/table.txt",
"--threshold=0.5",
],
)
_assert_exit_0(result)
# check comparisons are there
assert os.path.exists(os.path.join(output_folder, "compare.pdf"))
assert os.path.exists(os.path.join(output_folder, "table.txt"))
keywords = {
r"^Dataset '\*': threshold =.*$": 1,
r"^Loading predictions from.*$": 2,
r"^Tabulating performance summary...": 1,
}
buf.seek(0)
logging_output = buf.read()

André Anjos
committed
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
def test_train_signstotb_montgomery_rs(temporary_basedir, datadir):
from ptbench.scripts.train import train
runner = CliRunner()
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "results/signstotb")
result = runner.invoke(
train,
[
"signs_to_tb",
"montgomery_rs",
"-vv",
"--batch-size=1",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
assert os.path.exists(
os.path.join(output_folder, "model_lowest_valid_loss.ckpt")
)
assert os.path.exists(os.path.join(output_folder, "constants.csv"))
assert os.path.exists(
os.path.join(output_folder, "logs_csv", "version_0", "metrics.csv")
)
assert os.path.exists(
os.path.join(output_folder, "logs_tensorboard", "version_0")
)
assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
keywords = {
r"^Found \(dedicated\) '__train__' set for training$": 1,
r"^Found \(dedicated\) '__valid__' set for validation$": 1,
r"^Continuing from epoch 0$": 1,
r"^Saving model summary at.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
def test_predict_signstotb_montgomery_rs(temporary_basedir, datadir):
from ptbench.scripts.predict import predict
runner = CliRunner()
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "predictions")
result = runner.invoke(
predict,
[
"signs_to_tb",
"montgomery_rs",
"-vv",
"--batch-size=1",
"--relevance-analysis",
f"--weight={str(datadir / 'lfs' / 'models' / 'signstotb.ckpt')}",
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
# check predictions are there
predictions_file = os.path.join(output_folder, "train/predictions.csv")
RA1 = os.path.join(output_folder, "train_RA.pdf")
RA2 = os.path.join(output_folder, "validation_RA.pdf")
RA3 = os.path.join(output_folder, "test_RA.pdf")
assert os.path.exists(predictions_file)
assert os.path.exists(RA1)
assert os.path.exists(RA2)
assert os.path.exists(RA3)
keywords = {
r"^Loading checkpoint from.*$": 1,
r"^Starting relevance analysis for subset.*$": 3,
r"^Creating and saving plot at.*$": 3,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
def test_train_logreg_montgomery_rs(temporary_basedir, datadir):
from ptbench.scripts.train import train
runner = CliRunner()
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "results/logreg")
result = runner.invoke(
train,
[
"logistic_regression",
"montgomery_rs",
"-vv",
"--batch-size=1",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
assert os.path.exists(
os.path.join(output_folder, "model_lowest_valid_loss.ckpt")
)
assert os.path.exists(os.path.join(output_folder, "constants.csv"))
assert os.path.exists(
os.path.join(output_folder, "logs_csv", "version_0", "metrics.csv")
)
assert os.path.exists(
os.path.join(output_folder, "logs_tensorboard", "version_0")
)
assert os.path.exists(os.path.join(output_folder, "model_summary.txt"))
keywords = {
r"^Found \(dedicated\) '__train__' set for training$": 1,
r"^Found \(dedicated\) '__valid__' set for validation$": 1,
r"^Continuing from epoch 0$": 1,
r"^Saving model summary at.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")
def test_predict_logreg_montgomery_rs(temporary_basedir, datadir):
from ptbench.scripts.predict import predict
runner = CliRunner()
with stdout_logging() as buf:
output_folder = str(temporary_basedir / "predictions")
result = runner.invoke(
predict,
[
"logistic_regression",
"montgomery_rs",
"-vv",
"--batch-size=1",
f"--weight={str(datadir / 'lfs' / 'models' / 'logreg.ckpt')}",
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)
# check predictions are there
predictions_file = os.path.join(output_folder, "train/predictions.csv")
wfile = os.path.join(output_folder, "LogReg_Weights.pdf")
assert os.path.exists(predictions_file)
assert os.path.exists(wfile)
keywords = {
r"^Loading checkpoint from.*$": 1,
r"^Logistic regression identified: saving model weights.*$": 1,
}
buf.seek(0)
logging_output = buf.read()
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
@pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
def test_aggregpred(temporary_basedir):
from ptbench.scripts.aggregpred import aggregpred

André Anjos
committed
runner = CliRunner()

André Anjos
committed
with stdout_logging() as buf:
predictions = str(
temporary_basedir / "predictions" / "train" / "predictions.csv"
)
output_folder = str(temporary_basedir / "aggregpred")
result = runner.invoke(
aggregpred,
[
"-vv",
f"{predictions}",
f"{predictions}",
f"--output-folder={output_folder}",
],
)
_assert_exit_0(result)

André Anjos
committed
# check csv file is there
assert os.path.exists(os.path.join(output_folder, "aggregpred.csv"))

André Anjos
committed
keywords = {
f"Output folder: {output_folder}": 1,
r"Saving aggregated CSV file...": 1,
r"^Loading predictions from.*$": 2,
}
buf.seek(0)
logging_output = buf.read()

André Anjos
committed
for k, v in keywords.items():
assert _str_counter(k, logging_output) == v, (
f"Count for string '{k}' appeared "
f"({_str_counter(k, logging_output)}) "
f"instead of the expected {v}:\nOutput:\n{logging_output}"
)
# @pytest.mark.skip_if_rc_var_not_set("datadir.montgomery")

André Anjos
committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# def test_predict_densenetrs_montgomery(temporary_basedir, datadir):
# from ptbench.scripts.predict import predict
# runner = CliRunner()
# with stdout_logging() as buf:
# output_folder = str(temporary_basedir / "predictions")
# result = runner.invoke(
# predict,
# [
# "densenet_rs",
# "montgomery_f0_rgb",
# "-vv",
# "--batch-size=1",
# f"--weight={str(datadir / 'lfs' / 'models' / 'densenetrs.pth')}",
# f"--output-folder={output_folder}",
# "--grad-cams"
# ],
# )
# _assert_exit_0(result)
# # check predictions are there
# predictions_file1 = os.path.join(output_folder, "train/predictions.csv")
# predictions_file2 = os.path.join(output_folder, "validation/predictions.csv")
# predictions_file3 = os.path.join(output_folder, "test/predictions.csv")
# assert os.path.exists(predictions_file1)
# assert os.path.exists(predictions_file2)
# assert os.path.exists(predictions_file3)
# # check some grad cams are there
# cam1 = os.path.join(output_folder, "train/cams/MCUCXR_0002_0_cam.png")
# cam2 = os.path.join(output_folder, "train/cams/MCUCXR_0126_1_cam.png")
# cam3 = os.path.join(output_folder, "train/cams/MCUCXR_0275_1_cam.png")
# cam4 = os.path.join(output_folder, "validation/cams/MCUCXR_0399_1_cam.png")
# cam5 = os.path.join(output_folder, "validation/cams/MCUCXR_0113_1_cam.png")
# cam6 = os.path.join(output_folder, "validation/cams/MCUCXR_0013_0_cam.png")
# cam7 = os.path.join(output_folder, "test/cams/MCUCXR_0027_0_cam.png")
# cam8 = os.path.join(output_folder, "test/cams/MCUCXR_0094_0_cam.png")
# cam9 = os.path.join(output_folder, "test/cams/MCUCXR_0375_1_cam.png")
# assert os.path.exists(cam1)
# assert os.path.exists(cam2)
# assert os.path.exists(cam3)
# assert os.path.exists(cam4)
# assert os.path.exists(cam5)
# assert os.path.exists(cam6)
# assert os.path.exists(cam7)
# assert os.path.exists(cam8)
# assert os.path.exists(cam9)
# keywords = {
# r"^Loading checkpoint from.*$": 1,
# r"^Total time:.*$": 3,
# r"^Grad cams folder:.*$": 3,
# }
# buf.seek(0)
# logging_output = buf.read()
# for k, v in keywords.items():
# assert _str_counter(k, logging_output) == v, (
# f"Count for string '{k}' appeared "
# f"({_str_counter(k, logging_output)}) "
# f"instead of the expected {v}:\nOutput:\n{logging_output}"
# )