Skip to content
Snippets Groups Projects
Commit d58df02d authored by Tim Laibacher's avatar Tim Laibacher
Browse files

Clean up

parent 17154dbb
No related branches found
No related tags found
No related merge requests found
Pipeline #32459 failed
Showing
with 0 additions and 547 deletions
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.chasedb1 import Database as CHASEDB1
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Crop(0,18,960,960)
,Resize(1024)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = CHASEDB1(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.chasedb1 import Database as CHASEDB1
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Crop(140,18,680,960)
,Resize(1168)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = CHASEDB1(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.drive import Database as DRIVE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,CenterCrop((540,540))
,Resize(1024)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = DRIVE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.drive import Database as DRIVE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Crop(75,10,416,544)
,Pad((21,0,22,0))
,Resize(1168)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = DRIVE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.drive import Database as DRIVE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,CenterCrop((544,544))
,Resize(960)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = DRIVE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
from bob.ip.binseg.configs.datasets.drive1024all import dataset as drive
from bob.ip.binseg.configs.datasets.stare1024all import dataset as stare
from bob.ip.binseg.configs.datasets.hrf1024all import dataset as hrf
from bob.ip.binseg.configs.datasets.chasedb11024all import dataset as chasedb
from bob.db.iostar import Database as IOSTAR
from bob.ip.binseg.data.transforms import *
import torch
#### Config ####
# PyTorch dataset
dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chasedb])
from bob.ip.binseg.configs.datasets.drive1024all import dataset as drive
from bob.ip.binseg.configs.datasets.stare1024all import dataset as stare
from bob.ip.binseg.configs.datasets.hrf1024all import dataset as hrf
from bob.ip.binseg.configs.datasets.chasedb11024all import dataset as chasedb
from bob.db.iostar import Database as IOSTAR
from bob.ip.binseg.data.transforms import *
import torch
from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
#### Config ####
# PyTorch dataset
labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,chasedb])
#### Unlabeled IOSTAR Train ####
unlabeled_transforms = Compose([
RandomHFlip()
,RandomVFlip()
,RandomRotation()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
iostarbobdb = IOSTAR(protocol='default_vessel')
# PyTorch dataset
unlabeled_dataset = UnLabeledBinSegDataset(iostarbobdb, split='train', transform=unlabeled_transforms)
# SSL Dataset
dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
from bob.ip.binseg.configs.datasets.drive1168all import dataset as drive
from bob.ip.binseg.configs.datasets.stare1168all import dataset as stare
from bob.ip.binseg.configs.datasets.chasedb11168all import dataset as chasedb
from bob.ip.binseg.configs.datasets.iostarvessel1168all import dataset as iostar
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
import torch
#### Config ####
# PyTorch dataset
dataset = torch.utils.data.ConcatDataset([drive,stare,iostar,chasedb])
\ No newline at end of file
from bob.ip.binseg.configs.datasets.drive1168all import dataset as drive
from bob.ip.binseg.configs.datasets.stare1168all import dataset as stare
from bob.ip.binseg.configs.datasets.chasedb11168all import dataset as chasedb
from bob.ip.binseg.configs.datasets.iostarvessel1168all import dataset as iostar
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
import torch
from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
#### Config ####
# PyTorch dataset
labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,iostar,chasedb])
#### Unlabeled HRF TRAIN ####
unlabeled_transforms = Compose([
RandomRotation()
,Crop(0,108,2336,3296)
,Resize((1168))
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
hrfbobdb = HRF(protocol='default')
# PyTorch dataset
unlabeled_dataset = UnLabeledBinSegDataset(hrfbobdb, split='train', transform=unlabeled_transforms)
# SSL Dataset
dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
from bob.ip.binseg.configs.datasets.drive960all import dataset as drive
from bob.ip.binseg.configs.datasets.stare960all import dataset as stare
from bob.ip.binseg.configs.datasets.hrf960all import dataset as hrf
from bob.ip.binseg.configs.datasets.iostarvessel960all import dataset as iostar
from bob.db.chasedb1 import Database as CHASE
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
import torch
#### Config ####
# PyTorch dataset
dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar])
\ No newline at end of file
from bob.ip.binseg.configs.datasets.drive960all import dataset as drive
from bob.ip.binseg.configs.datasets.stare960all import dataset as stare
from bob.ip.binseg.configs.datasets.hrf960all import dataset as hrf
from bob.ip.binseg.configs.datasets.iostarvessel960all import dataset as iostar
from bob.db.chasedb1 import Database as CHASE
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
import torch
from bob.ip.binseg.data.binsegdataset import BinSegDataset, SSLBinSegDataset, UnLabeledBinSegDataset
#### Config ####
# PyTorch dataset
labeled_dataset = torch.utils.data.ConcatDataset([drive,stare,hrf,iostar])
#### Unlabeled CHASE TRAIN ####
unlabeled_transforms = Compose([
Crop(0,18,960,960)
,RandomHFlip()
,RandomVFlip()
,RandomRotation()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
chasebobdb = CHASE(protocol = 'default')
# PyTorch dataset
unlabeled_dataset = UnLabeledBinSegDataset(chasebobdb, split='train', transform=unlabeled_transforms)
# SSL Dataset
dataset = SSLBinSegDataset(labeled_dataset, unlabeled_dataset)
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
Pad((0,584,0,584))
,Resize((1024))
,RandomRotation()
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = HRF(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.hrf import Database as HRF
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
Pad((0,584,0,584))
,Resize((960))
,RandomRotation()
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = HRF(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.iostar import Database as IOSTAR
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Crop(144,0,768,1024)
,Pad((30,0,30,0))
,Resize(1168)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = IOSTAR(protocol='default_vessel')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.iostar import Database as IOSTAR
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
Resize(960)
,RandomHFlip()
,RandomVFlip()
,RandomRotation()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = IOSTAR(protocol='default_vessel')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.stare import Database as STARE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Pad((0,32,0,32))
,Resize(1024)
,CenterCrop(1024)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = STARE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.stare import Database as STARE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Crop(50,0,500,705)
,Resize(1168)
,Pad((1,0,1,0))
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = STARE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from bob.db.stare import Database as STARE
from bob.ip.binseg.data.transforms import *
from bob.ip.binseg.data.binsegdataset import BinSegDataset
import torch
#### Config ####
transforms = Compose([
RandomRotation()
,Pad((0,32,0,32))
,Resize(960)
,CenterCrop(960)
,RandomHFlip()
,RandomVFlip()
,ColorJitter()
,ToTensor()
])
# bob.db.dataset init
bobdb = STARE(protocol = 'default')
# PyTorch dataset
train = BinSegDataset(bobdb, split='train', transform=transforms)
test = BinSegDataset(bobdb, split='test', transform=transforms)
dataset = torch.utils.data.ConcatDataset([train,test])
\ No newline at end of file
......@@ -240,70 +240,6 @@ def test(model
do_inference(model, data_loader, device, output_path)
# Inference all checkpoints
@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
@click.option(
'--output-path',
'-o',
required=True,
default="output",
cls=ResourceOption
)
@click.option(
'--model',
'-m',
required=True,
cls=ResourceOption
)
@click.option(
'--dataset',
'-d',
required=True,
cls=ResourceOption
)
@click.option(
'--batch-size',
'-b',
required=True,
default=2,
cls=ResourceOption)
@click.option(
'--device',
'-d',
help='A string indicating the device to use (e.g. "cpu" or "cuda:0"',
show_default=True,
required=True,
default='cpu',
cls=ResourceOption)
@verbosity_option(cls=ResourceOption)
def testcheckpoints(model
,output_path
,device
,batch_size
,dataset
, **kwargs):
""" Run inference and evaluate all checkpoints saved for a model"""
# PyTorch dataloader
data_loader = DataLoader(
dataset = dataset
,batch_size = batch_size
,shuffle= False
,pin_memory = torch.cuda.is_available()
)
# list checkpoints
ckpts = glob.glob(os.path.join(output_path,"*.pth"))
# output
for checkpoint in ckpts:
ckpts_name = os.path.basename(checkpoint).split('.')[0]
logger.info("Testing checkpoint: {}".format(ckpts_name))
output_subfolder = os.path.join(output_path, ckpts_name)
if not os.path.exists(output_subfolder): os.makedirs(output_subfolder)
# checkpointer, load last model in dir
checkpointer = DetectronCheckpointer(model, save_dir = output_subfolder, save_to_disk=False)
checkpointer.load(checkpoint)
do_inference(model, data_loader, device, output_subfolder)
# Plot comparison
@binseg.command(entry_point_group='bob.ip.binseg.config', cls=ConfigCommand)
......
......@@ -49,8 +49,6 @@ setup(
'train = bob.ip.binseg.script.binseg:train',
'test = bob.ip.binseg.script.binseg:test',
'compare = bob.bin.binseg.script.binseg:compare',
'testcheckpoints = bob.ip.binseg.script.binseg:testcheckpoints',
'pdfoverview = bob.ip.binseg.script.binseg:testcheckpoints',
'gridtable = bob.ip.binseg.script.binseg:testcheckpoints',
'visualize = bob.ip.binseg.script.binseg:visualize',
],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment