Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
deepdraw
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
medai
software
deepdraw
Commits
6b6fa4d8
Commit
6b6fa4d8
authored
4 years ago
by
André Anjos
Browse files
Options
Downloads
Patches
Plain Diff
[doc] Fix result section
parent
d2b0febb
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!12
Streamlining
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
doc/baselines.rst
+59
-0
59 additions, 0 deletions
doc/baselines.rst
doc/covd.rst
+115
-0
115 additions, 0 deletions
doc/covd.rst
doc/index.rst
+1
-2
1 addition, 2 deletions
doc/index.rst
doc/results.rst
+22
-0
22 additions, 0 deletions
doc/results.rst
doc/usage.rst
+3
-3
3 additions, 3 deletions
doc/usage.rst
with
200 additions
and
5 deletions
doc/baselines.rst
0 → 100644
+
59
−
0
View file @
6b6fa4d8
.. -*- coding: utf-8 -*-
.. _bob.ip.binseg.results.baselines:
===================
Baseline Results
===================
F1 Scores (micro-level)
-----------------------
* Benchmark results for models: DRIU, HED, M2U-Net and U-Net.
* Models are trained and tested on the same dataset using the
train-test split as indicated in :ref:`bob.ip.binseg.configs.datasets` (i.e.,
these are *intra*-datasets tests)
* Standard-deviations across all test images are indicated in brakets
* Database and Model links (table top row and left column) are linked to the
originating configuration files used to obtain these results.
* For some results, the actual deep neural network models are provided (by
clicking on the associated F1 Score).
* Check `our paper`_ for details on the calculation of the F1 Score and standard
deviations.
.. list-table::
:header-rows: 1
* - F1 (std)
- :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`
- :py:mod:`HED <bob.ip.binseg.configs.models.hed>`
- :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`
- :py:mod:`U-Net <bob.ip.binseg.configs.models.unet>`
* - :py:mod:`CHASE-DB1 <bob.ip.binseg.configs.datasets.chasedb1>`
- `0.810 (0.021) <driu_chasedb1.pth_>`_
- 0.810 (0.022)
- `0.802 (0.019) <m2unet_chasedb1.pth_>`_
- 0.812 (0.020)
* - :py:mod:`DRIVE <bob.ip.binseg.configs.datasets.drive>`
- `0.820 (0.014) <driu_drive.pth_>`_
- 0.817 (0.013)
- `0.803 (0.014) <m2unet_drive.pth_>`_
- 0.822 (0.015)
* - :py:mod:`HRF <bob.ip.binseg.configs.datasets.hrf_1168>`
- `0.783 (0.055) <driu_hrf.pth_>`_
- 0.783 (0.058)
- `0.780 (0.057) <m2unet_hrf.pth_>`_
- 0.788 (0.051)
* - :py:mod:`IOSTAR (vessel) <bob.ip.binseg.configs.datasets.iostar_vessel>`
- `0.825 (0.020) <driu_iostar.pth_>`_
- 0.825 (0.020)
- `0.817 (0.020) <m2unet_iostar.pth_>`_
- 0.818 (0.019)
* - :py:mod:`STARE <bob.ip.binseg.configs.datasets.stare>`
- `0.827 (0.037) <driu_stare.pth_>`_
- 0.823 (0.037)
- `0.815 (0.041) <m2unet_stare.pth_>`_
- 0.829 (0.042)
.. include:: links.rst
This diff is collapsed.
Click to expand it.
doc/covd.rst
0 → 100644
+
115
−
0
View file @
6b6fa4d8
.. -*- coding: utf-8 -*-
.. _bob.ip.binseg.covdresults:
============================
COVD- and COVD-SLL Results
============================
In addition to the M2U-Net architecture, we also evaluated the larger DRIU
network and a variation of it that contains batch normalization (DRIU+BN) on
COVD- (Combined Vessel Dataset from all training data minus target test set)
and COVD-SSL (COVD- and Semi-Supervised Learning). Perhaps surprisingly, for
the majority of combinations, the performance of the DRIU variants are roughly
equal or worse to the ones obtained with the much smaller M2U-Net. We
anticipate that one reason for this could be overparameterization of large
VGG-16 models that are pretrained on ImageNet.
F1 Scores
---------
Comparison of F1 Scores (micro-level and standard deviation) of DRIU and
M2U-Net on COVD- and COVD-SSL. Standard deviation across test-images in
brackets.
.. list-table::
:header-rows: 1
* - F1 score
- :py:mod:`DRIU <bob.ip.binseg.configs.models.driu>`/:py:mod:`DRIU@SSL <bob.ip.binseg.configs.models.driu_ssl>`
- :py:mod:`DRIU+BN <bob.ip.binseg.configs.models.driu_bn>`/:py:mod:`DRIU+BN@SSL <bob.ip.binseg.configs.models.driu_bn_ssl>`
- :py:mod:`M2U-Net <bob.ip.binseg.configs.models.m2unet>`/:py:mod:`M2U-Net@SSL <bob.ip.binseg.configs.models.m2unet_ssl>`
* - :py:mod:`COVD-DRIVE <bob.ip.binseg.configs.datasets.covd_drive>`
- 0.788 (0.018)
- 0.797 (0.019)
- `0.789 (0.018) <m2unet_covd-drive.pth>`_
* - :py:mod:`COVD-DRIVE+SSL <bob.ip.binseg.configs.datasets.covd_drive_ssl>`
- 0.785 (0.018)
- 0.783 (0.019)
- `0.791 (0.014) <m2unet_covd-drive_ssl.pth>`_
* - :py:mod:`COVD-STARE <bob.ip.binseg.configs.datasets.covd_stare>`
- 0.778 (0.117)
- 0.778 (0.122)
- `0.812 (0.046) <m2unet_covd-stare.pth>`_
* - :py:mod:`COVD-STARE+SSL <bob.ip.binseg.configs.datasets.covd_stare_ssl>`
- 0.788 (0.102)
- 0.811 (0.074)
- `0.820 (0.044) <m2unet_covd-stare_ssl.pth>`_
* - :py:mod:`COVD-CHASEDB1 <bob.ip.binseg.configs.datasets.covd_chasedb1>`
- 0.796 (0.027)
- 0.791 (0.025)
- `0.788 (0.024) <m2unet_covd-chasedb1.pth>`_
* - :py:mod:`COVD-CHASEDB1+SSL <bob.ip.binseg.configs.datasets.covd_chasedb1_ssl>`
- 0.796 (0.024)
- 0.798 (0.025)
- `0.799 (0.026) <m2unet_covd-chasedb1_ssl.pth>`_
* - :py:mod:`COVD-HRF <bob.ip.binseg.configs.datasets.covd_hrf>`
- 0.799 (0.044)
- 0.800 (0.045)
- `0.802 (0.045) <m2unet_covd-hrf.pth>`_
* - :py:mod:`COVD-HRF+SSL <bob.ip.binseg.configs.datasets.covd_hrf_ssl>`
- 0.799 (0.044)
- 0.784 (0.048)
- `0.797 (0.044) <m2unet_covd-hrf_ssl.pth>`_
* - :py:mod:`COVD-IOSTAR-VESSEL <bob.ip.binseg.configs.datasets.covd_iostar_vessel>`
- 0.791 (0.021)
- 0.777 (0.032)
- `0.793 (0.015) <m2unet_covd-iostar.pth>`_
* - :py:mod:`COVD-IOSTAR-VESSEL+SSL <bob.ip.binseg.configs.datasets.covd_iostar_vessel_ssl>`
- 0.797 (0.017)
- 0.811 (0.074)
- `0.785 (0.018) <m2unet_covd-iostar_ssl.pth>`_
M2U-Net Precision vs. Recall Curves
-----------------------------------
Precision vs. recall curves for each evaluated dataset. Note that here the
F1-score is calculated on a macro level (see paper for more details).
.. figure:: img/pr_CHASEDB1.png
:scale: 50 %
:align: center
:alt: model comparisons
CHASE_DB1: Precision vs Recall curve and F1 scores
.. figure:: img/pr_DRIVE.png
:scale: 50 %
:align: center
:alt: model comparisons
DRIVE: Precision vs Recall curve and F1 scores
.. figure:: img/pr_HRF.png
:scale: 50 %
:align: center
:alt: model comparisons
HRF: Precision vs Recall curve and F1 scores
.. figure:: img/pr_IOSTARVESSEL.png
:scale: 50 %
:align: center
:alt: model comparisons
IOSTAR: Precision vs Recall curve and F1 scores
.. figure:: img/pr_STARE.png
:scale: 50 %
:align: center
:alt: model comparisons
STARE: Precision vs Recall curve and F1 scores
This diff is collapsed.
Click to expand it.
doc/index.rst
+
1
−
2
View file @
6b6fa4d8
...
...
@@ -43,8 +43,7 @@ User Guide
setup
usage
benchmarkresults
covdresults
results
acknowledgements
references
datasets
...
...
This diff is collapsed.
Click to expand it.
doc/results.rst
0 → 100644
+
22
−
0
View file @
6b6fa4d8
.. -*- coding: utf-8 -*-
.. _bob.ip.binseg.results:
=========
Results
=========
This section summarizes results that can be obtained with this package, and
were presented in our paper. We organize the result section in two parts, for
covering baseline results (training and testing on the same dataset) and
results using our Combined Vessel Dataset minus target dataset (COVD-) training
strategy.
.. toctree::
:maxdepth: 2
baselines
covd
.. include:: links.rst
This diff is collapsed.
Click to expand it.
doc/usage.rst
+
3
−
3
View file @
6b6fa4d8
...
...
@@ -2,9 +2,9 @@
.. _bob.ip.binseg.usage:
=======
===========
Usage
Guidelines
=======
===========
=======
Usage
=======
This package supports a fully reproducible research experimentation cycle for
semantic binary segmentation with support for the following activities:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment