Skip to content
Snippets Groups Projects
Commit 3ebea75e authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

[utils.measure] Fix docs

parent 205a4b59
No related branches found
No related tags found
No related merge requests found
Pipeline #39704 failed
......@@ -33,52 +33,51 @@ def base_measures(tp, fp, tn, fn):
Calculates a bunch of measures from true/false positive and negative counts
This function can return standard machine learning measures from true and
false positive counts of positives and negatives.
For a thorough look into these and alternate names for the returned values,
please check Wikipedia's entry on `Precision and Recall`_.
false positive counts of positives and negatives. For a thorough look into
these and alternate names for the returned values, please check Wikipedia's
entry on `Precision and Recall`_.
Parameters
----------
tp : int
True positive count, AKA "hit"
tp : int
True positive count, AKA "hit"
fp : int
False positive count, AKA, "correct rejection"
fp : int
False positive count, AKA, "correct rejection"
tn : int
True negative count, AKA "false alarm", or "Type I error"
tn : int
True negative count, AKA "false alarm", or "Type I error"
fn : int
False Negative count, AKA "miss", or "Type II error"
fn : int
False Negative count, AKA "miss", or "Type II error"
Returns
-------
precision : float
P, AKA positive predictive value (PPV)
:math:`\frac{tp}{tp+fp}`
precision : float
P, AKA positive predictive value (PPV)
:math:`\frac{tp}{tp+fp}`
recall : float
R, AKA sensitivity, hit rate, or true positive rate (TPR)
:math:`\frac{tp}{p} = \frac{tp}{tp+fn}`
recall : float
R, AKA sensitivity, hit rate, or true positive rate (TPR)
:math:`\frac{tp}{p} = \frac{tp}{tp+fn}`
specificity : float
S, AKA selectivity or true negative rate (TNR).
:math:`\frac{tn}{n} = \frac{tn}{tn+fp}`
specificity : float
S, AKA selectivity or true negative rate (TNR).
:math:`\frac{tn}{n} = \frac{tn}{tn+fp}`
accuracy : float
A, :math:`\frac{tp + tn}{p + n} = \frac{tp + tn}{tp + fp + tn + fn}`
accuracy : float
A, :math:`\frac{tp + tn}{p + n} = \frac{tp + tn}{tp + fp + tn + fn}`
jaccard : float
J, :math:`\frac{tp}{tp+fp+fn}`, see `Jaccard Index`_
jaccard : float
J, :math:`\frac{tp}{tp+fp+fn}`, see `Jaccard Index`_
f1_score : float
F1, :math:`\frac{2 P R}{P + R} = \frac{2tp}{2tp + fp + fn}`, see
`F1-score`_
f1_score : float
F1, :math:`\frac{2 P R}{P + R} = \frac{2tp}{2tp + fp + fn}`, see
`F1-score`_
"""
......
......@@ -9,6 +9,9 @@
.. _pytorch: https://pytorch.org
.. _tabulate: https://pypi.org/project/tabulate/
.. _our paper: https://arxiv.org/abs/1909.03856
.. _precision and recall: https://en.wikipedia.org/wiki/Precision_and_recall
.. _f1-score: https://en.wikipedia.org/wiki/F1_score
.. _jaccard index: https://en.wikipedia.org/wiki/Jaccard_index
.. Raw data websites
.. _drive: https://www.isi.uu.nl/Research/Databases/DRIVE/
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment