-
André Anjos authored
[utils.metric] Rename as measure as some of the values are not real metrics; Add tests for AUC and improve its implementation
André Anjos authored[utils.metric] Rename as measure as some of the values are not real metrics; Add tests for AUC and improve its implementation
measure.py 3.71 KiB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from collections import deque
import numpy
import torch
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20):
self.deque = deque(maxlen=window_size)
def update(self, value):
self.deque.append(value)
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque))
return d.mean().item()
def base_measures(tp, fp, tn, fn):
"""
Calculates a bunch of measures from true/false positive and negative counts
This function can return standard machine learning measures from true and
false positive counts of positives and negatives.
For a thorough look into these and alternate names for the returned values,
please check Wikipedia's entry on `Precision and Recall`_.
Parameters
----------
tp : int
True positive count, AKA "hit"
fp : int
False positive count, AKA, "correct rejection"
tn : int
True negative count, AKA "false alarm", or "Type I error"
fn : int
False Negative count, AKA "miss", or "Type II error"
Returns
-------
precision : float
P, AKA positive predictive value (PPV)
:math:`\frac{tp}{tp+fp}`
recall : float
R, AKA sensitivity, hit rate, or true positive rate (TPR)
:math:`\frac{tp}{p} = \frac{tp}{tp+fn}`
specificity : float
S, AKA selectivity or true negative rate (TNR).
:math:`\frac{tn}{n} = \frac{tn}{tn+fp}`
accuracy : float
A, :math:`\frac{tp + tn}{p + n} = \frac{tp + tn}{tp + fp + tn + fn}`
jaccard : float
J, :math:`\frac{tp}{tp+fp+fn}`, see `Jaccard Index`_
f1_score : float
F1, :math:`\frac{2 P R}{P + R} = \frac{2tp}{2tp + fp + fn}`, see
`F1-score`_
"""
tp = float(tp)
tn = float(tn)
precision = tp / (tp + fp + ((tp + fp) == 0))
recall = tp / (tp + fn + ((tp + fn) == 0))
specificity = tn / (fp + tn + ((fp + tn) == 0))
accuracy = (tp + tn) / (tp + fp + fn + tn)
jaccard = tp / (tp + fp + fn + ((tp + fp + fn) == 0))
f1_score = (2.0 * tp) / (2.0 * tp + fp + fn + ((2.0 * tp + fp + fn) == 0))
# f1_score = (2.0 * precision * recall) / (precision + recall)
return [precision, recall, specificity, accuracy, jaccard, f1_score]
def auc(x, y):
"""Calculates the area under the precision-recall curve (AUC)
This function requires a minimum of 2 points and will use the trapezoidal
method to calculate the area under a curve bound between ``[0.0, 1.0]``.
It interpolates missing points if required. The input ``x`` should be
continuously increasing or decreasing.
Parameters
----------
x : numpy.ndarray
A 1D numpy array containing continuously increasing or decreasing
values for the X coordinate.
y : numpy.ndarray
A 1D numpy array containing the Y coordinates of the X values provided
in ``x``.
"""
x = numpy.array(x)
y = numpy.array(y)
assert len(x) == len(y), "x and y sequences must have the same length"
dx = numpy.diff(x)
if numpy.any(dx < 0):
if numpy.all(dx <= 0):
# invert direction
x = x[::-1]
y = y[::-1]
else:
raise ValueError("x is neither increasing nor decreasing "
": {}.".format(x))
y_interp = numpy.interp(
numpy.arange(0, 1, 0.001),
numpy.array(x),
numpy.array(y),
left=1.0,
right=0.0,
)
return y_interp.sum() * 0.001