Skip to content
Snippets Groups Projects
datasets.rst 4.01 KiB

Supported Datasets

# Name H x W # imgs Train Test Mask Vessel OD Cup Train-Test split reference
1 Drive_ 584 x 565 40 20 20 x x     `Staal et al. (2004)`_
2 STARE_ 605 x 700 20 10 10   x     `Maninis et al. (2016)`_
3 CHASEDB1_ 960 x 999 28 8 20   x     `Fraz et al. (2012)`_
4 HRF_ 2336 x 3504 45 15 30 x x     `Orlando et al. (2016)`_
5 IOSTAR_ 1024 x 1024 30 20 10 x x x   `Meyer et al. (2017)`_
6 DRIONS-DB_ 400 x 600 110 60 50     x   `Maninis et al. (2016)`_
7 RIM-ONEr3_ 1424 x 1072 159 99 60     x x `Maninis et al. (2016)`_
8 Drishti-GS1_ varying 101 50 51     x x `Sivaswamy et al. (2014)`_
9 REFUGE_ train 2056 x 2124 400 400       x x REFUGE_
9 REFUGE_ val 1634 x 1634 400   400     x x REFUGE_

Add-on: Folder-based Dataset

For quick experimentation, we also provide a PyTorch_ class that works with the following dataset folder structure for images and ground-truth (gt):

root
   |- images
   |- gt

The file names should have the same stem. Currently, all image formats that can be read via PIL are supported. Additionally, we also support HDF5 binary files.

For training, a new dataset configuration needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefolder` and amend it accordingly, e.g. to point to the the full path of the dataset and if necessary any preprocessing steps such as resizing, cropping, padding etc.

Training can then be started with, e.g.:

bob binseg train M2UNet /path/to/myimagefolderconfig.py -b 4 -d cuda -o /my/output/path -vv

Similary for testing, a test dataset config needs to be created. You can copy the template :ref:`bob.ip.binseg.configs.datasets.imagefoldertest` and amend it accordingly.

Testing can then be started with, e.g.:

bob binseg test M2UNet /path/to/myimagefoldertestconfig.py -b 2 -d cuda -o /my/output/path -vv