-
André Anjos authoredAndré Anjos authored
test_config.py 21.73 KiB
#!/usr/bin/env python
# coding=utf-8
import importlib
import nose.tools
import torch
from . import mock_dataset
stare_datadir, stare_dataset, stare_variable_set = mock_dataset()
from .utils import rc_variable_set
# we only iterate over the first N elements at most - dataset loading has
# already been checked on the individual datset tests. Here, we are only
# testing for the extra tools wrapping the dataset
N = 10
@rc_variable_set("bob.ip.binseg.drive.datadir")
def test_drive():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples:
nose.tools.eq_(len(s), 4)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
nose.tools.eq_(s[3].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(s[3].dtype, torch.float32)
from ..configs.datasets.drive.default import dataset
nose.tools.eq_(len(dataset), 3)
_check_subset(dataset["__train__"], 20)
_check_subset(dataset["train"], 20)
_check_subset(dataset["test"], 20)
from ..configs.datasets.drive.second_annotator import dataset
nose.tools.eq_(len(dataset), 1)
_check_subset(dataset["test"], 20)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_drive_mtest():
from ..configs.datasets.drive.mtest import dataset
nose.tools.eq_(len(dataset), 6)
from ..configs.datasets.drive.default import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
for subset in dataset:
for sample in dataset[subset]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 544, 544))
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 544, 544))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_drive_covd():
from ..configs.datasets.drive.covd import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.drive.default import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 53)
for sample in dataset["__train__"]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_drive_ssl():
from ..configs.datasets.drive.ssl import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.drive.default import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 53)
for sample in dataset["__train__"]:
assert 5 <= len(sample) <= 6
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 6:
nose.tools.eq_(sample[3].shape, (1, 544, 544)) #planes, height, width
nose.tools.eq_(sample[3].dtype, torch.float32)
assert isinstance(sample[4], str)
nose.tools.eq_(sample[5].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(sample[5].dtype, torch.float32)
else:
assert isinstance(sample[3], str)
nose.tools.eq_(sample[4].shape, (3, 544, 544)) #planes, height, width
nose.tools.eq_(sample[4].dtype, torch.float32)
@stare_variable_set("bob.ip.binseg.stare.datadir")
def test_stare_augmentation_manipulation():
# some tests to check our context management for dataset augmentation works
# adequately, with one example dataset
# hack to allow testing on the CI
from ..configs.datasets.stare import _maker
dataset = _maker("ah", stare_dataset)
nose.tools.eq_(len(dataset["__train__"]._transforms.transforms),
len(dataset["test"]._transforms.transforms) + 4)
nose.tools.eq_(len(dataset["train"]._transforms.transforms),
len(dataset["test"]._transforms.transforms))
@stare_variable_set("bob.ip.binseg.stare.datadir")
def test_stare():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 608, 704)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 608, 704)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
# hack to allow testing on the CI
from ..configs.datasets.stare import _maker
for protocol in "ah", "vk":
dataset = _maker(protocol, stare_dataset)
nose.tools.eq_(len(dataset), 3)
_check_subset(dataset["__train__"], 10)
_check_subset(dataset["train"], 10)
_check_subset(dataset["test"], 10)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_stare_mtest():
from ..configs.datasets.stare.mtest import dataset
nose.tools.eq_(len(dataset), 6)
from ..configs.datasets.stare.ah import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
for subset in dataset:
for sample in dataset[subset]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes,height,width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes,height,width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 608, 704))
nose.tools.eq_(sample[3].dtype, torch.float32)
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.drive.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_stare_covd():
from ..configs.datasets.stare.covd import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.stare.ah import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 63)
for sample in dataset["__train__"]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 608, 704)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 608, 704)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 608, 704)) #planes, height, width
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
def test_chasedb1():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 960, 960)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 960, 960)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
for m in ("first_annotator", "second_annotator"):
d = importlib.import_module(f"...configs.datasets.chasedb1.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 3)
_check_subset(d["__train__"], 8)
_check_subset(d["train"], 8)
_check_subset(d["test"], 20)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_chasedb1_mtest():
from ..configs.datasets.chasedb1.mtest import dataset
nose.tools.eq_(len(dataset), 6)
from ..configs.datasets.chasedb1.first_annotator import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
for subset in dataset:
for sample in dataset[subset]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes,height,width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes,height,width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 960, 960))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_chasedb1_covd():
from ..configs.datasets.chasedb1.covd import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.chasedb1.first_annotator import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 65)
for sample in dataset["__train__"]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 960, 960)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 960, 960)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 960, 960)) #planes, height, width
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.hrf.datadir")
def test_hrf():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples:
nose.tools.eq_(len(s), 4)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 1168, 1648)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 1168, 1648)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
nose.tools.eq_(s[3].shape, (1, 1168, 1648)) #planes, height, width
nose.tools.eq_(s[3].dtype, torch.float32)
from ..configs.datasets.hrf.default import dataset
nose.tools.eq_(len(dataset), 3)
_check_subset(dataset["__train__"], 15)
_check_subset(dataset["train"], 15)
_check_subset(dataset["test"], 30)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_hrf_mtest():
from ..configs.datasets.hrf.mtest import dataset
nose.tools.eq_(len(dataset), 6)
from ..configs.datasets.hrf.default import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
for subset in dataset:
for sample in dataset[subset]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes,height,width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes,height,width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 1168, 1648))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_hrf_covd():
from ..configs.datasets.hrf.covd import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.hrf.default import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 58)
for sample in dataset["__train__"]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 1168, 1648)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 1168, 1648)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 1168, 1648))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_iostar():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples:
nose.tools.eq_(len(s), 4)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 1024, 1024)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 1024, 1024)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
nose.tools.eq_(s[3].shape, (1, 1024, 1024)) #planes, height, width
nose.tools.eq_(s[3].dtype, torch.float32)
for m in ("vessel", "optic_disc"):
d = importlib.import_module(f"...configs.datasets.iostar.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 3)
_check_subset(d["__train__"], 20)
_check_subset(d["train"], 20)
_check_subset(d["test"], 10)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_iostar_mtest():
from ..configs.datasets.iostar.vessel_mtest import dataset
nose.tools.eq_(len(dataset), 6)
from ..configs.datasets.iostar.vessel import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
for subset in dataset:
for sample in dataset[subset]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes,height,width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes,height,width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 1024, 1024))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.drive.datadir")
@stare_variable_set("bob.ip.binseg.stare.datadir")
@rc_variable_set("bob.ip.binseg.chasedb1.datadir")
@rc_variable_set("bob.ip.binseg.hrf.datadir")
@rc_variable_set("bob.ip.binseg.iostar.datadir")
def test_iostar_covd():
from ..configs.datasets.iostar.covd import dataset
nose.tools.eq_(len(dataset), 3)
from ..configs.datasets.iostar.vessel import dataset as baseline
nose.tools.eq_(dataset["train"], baseline["train"])
nose.tools.eq_(dataset["test"], baseline["test"])
# this is the only different set from the baseline
nose.tools.eq_(len(dataset["__train__"]), 53)
for sample in dataset["__train__"]:
assert 3 <= len(sample) <= 4
assert isinstance(sample[0], str)
nose.tools.eq_(sample[1].shape, (3, 1024, 1024)) #planes, height, width
nose.tools.eq_(sample[1].dtype, torch.float32)
nose.tools.eq_(sample[2].shape, (1, 1024, 1024)) #planes, height, width
nose.tools.eq_(sample[2].dtype, torch.float32)
if len(sample) == 4:
nose.tools.eq_(sample[3].shape, (1, 1024, 1024))
nose.tools.eq_(sample[3].dtype, torch.float32)
@rc_variable_set("bob.ip.binseg.refuge.datadir")
def test_refuge():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples[:N]:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 1632, 1632)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 1632, 1632)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
for m in ("disc", "cup"):
d = importlib.import_module(f"...configs.datasets.refuge.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 4)
_check_subset(d["__train__"], 400)
_check_subset(d["train"], 400)
_check_subset(d["validation"], 400)
_check_subset(d["test"], 400)
@rc_variable_set("bob.ip.binseg.drishtigs1.datadir")
def test_drishtigs1():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples[:N]:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 1760, 2048)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 1760, 2048)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
for m in ("disc_all", "cup_all", "disc_any", "cup_any"):
d = importlib.import_module(f"...configs.datasets.drishtigs1.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 3)
_check_subset(d["__train__"], 50)
_check_subset(d["train"], 50)
_check_subset(d["test"], 51)
@rc_variable_set("bob.ip.binseg.rimoner3.datadir")
def test_rimoner3():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples[:N]:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 1440, 1088)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 1440, 1088)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
for m in ("disc_exp1", "cup_exp1", "disc_exp2", "cup_exp2"):
d = importlib.import_module(f"...configs.datasets.rimoner3.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 3)
_check_subset(d["__train__"], 99)
_check_subset(d["train"], 99)
_check_subset(d["test"], 60)
@rc_variable_set("bob.ip.binseg.drionsdb.datadir")
def test_drionsdb():
def _check_subset(samples, size):
nose.tools.eq_(len(samples), size)
for s in samples[:N]:
nose.tools.eq_(len(s), 3)
assert isinstance(s[0], str)
nose.tools.eq_(s[1].shape, (3, 416, 608)) #planes, height, width
nose.tools.eq_(s[1].dtype, torch.float32)
nose.tools.eq_(s[2].shape, (1, 416, 608)) #planes, height, width
nose.tools.eq_(s[2].dtype, torch.float32)
for m in ("expert1", "expert2"):
d = importlib.import_module(f"...configs.datasets.drionsdb.{m}",
package=__name__).dataset
nose.tools.eq_(len(d), 3)
_check_subset(d["__train__"], 60)
_check_subset(d["train"], 60)
_check_subset(d["test"], 50)