Select Git revision
plot_align_faces.py
setup.py 3.74 KiB
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Mon 16 Apr 08:18:08 2012 CEST
from setuptools import setup
from setuptools import setup, dist
dist.Distribution(dict(setup_requires=['bob.extension']))
from bob.extension.utils import load_requirements, find_packages
install_requires = load_requirements()
# The only thing we do in this file is to call the setup() function with all
# parameters that define our package.
setup(
# This is the basic information about your project. Modify all this
# information before releasing code publicly.
name='bob.learn.tensorflow',
version=open("version.txt").read().rstrip(),
description='Bob bindings for tensorflow',
url='',
license='BSD',
author='Tiago de Freitas Pereira',
author_email='tiago.pereira@idiap.ch',
keywords='tensorflow',
# If you have a better, long description of your package, place it on the
# 'doc' directory and then hook it here
long_description=open('README.rst').read(),
# This line is required for any distutils based packaging.
include_package_data=True,
# This line defines which packages should be installed when you "install"
# this package. All packages that are mentioned here, but are not installed
# on the current system will be installed locally and only visible to the
# scripts of this package. Don't worry - You won't need administrative
# privileges when using buildout.
install_requires=install_requires,
packages=find_packages(),
zip_safe=False,
entry_points={
# main entry for bob tf cli
'bob.cli': [
'tf = bob.learn.tensorflow.script.tf:tf',
'keras = bob.learn.tensorflow.script.keras:keras',
],
# bob tf scripts
'bob.learn.tensorflow.cli': [
'cache-dataset = bob.learn.tensorflow.script.cache_dataset:cache_dataset',
'cgm-dataset = bob.learn.tensorflow.script.cgm:cgm_dataset',
'compute-statistics = bob.learn.tensorflow.script.compute_statistics:compute_statistics',
'dataset-to-hdf5 = bob.learn.tensorflow.script.db_to_tfrecords:dataset_to_hdf5',
'datasets-to-tfrecords = bob.learn.tensorflow.script.db_to_tfrecords:datasets_to_tfrecords',
'db-to-tfrecords = bob.learn.tensorflow.script.db_to_tfrecords:db_to_tfrecords',
'describe-tfrecord = bob.learn.tensorflow.script.db_to_tfrecords:describe_tfrecord',
'distance-matrix = bob.learn.tensorflow.script.cgm:distance_matrix',
'eval = bob.learn.tensorflow.script.eval:eval',
'predict = bob.learn.tensorflow.script.predict_bio:predict',
'predict-bio = bob.learn.tensorflow.script.predict_bio:predict_bio',
'style-transfer = bob.learn.tensorflow.script.style_transfer:style_transfer',
'train = bob.learn.tensorflow.script.train:train',
'train-and-evaluate = bob.learn.tensorflow.script.train_and_evaluate:train_and_evaluate',
'trim = bob.learn.tensorflow.script.trim:trim',
],
# bob keras scripts
'bob.learn.tensorflow.keras_cli': [
'fit = bob.learn.tensorflow.script.fit:fit',
],
},
# Classifiers are important if you plan to distribute this package through
# PyPI. You can find the complete list of classifiers that are valid and
# useful here (http://pypi.python.org/pypi?%3Aaction=list_classifiers).
classifiers=[
'Framework :: Bob',
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: BSD License',
'Natural Language :: English',
'Programming Language :: Python',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)