Skip to content
Snippets Groups Projects

Set of click commands for pad

Merged Theophile GENTILHOMME requested to merge theo-cli into theo
Compare and
17 files
+ 42496
117
Compare changes
  • Side-by-side
  • Inline
Files
17
+ 451
0
#!/usr/bin/env python
# Ivana Chingovska <ivana.chingovska@idiap.ch>
# Fri Dec 7 12:33:37 CET 2012
"""Utility functions for computation of EPSC curve and related measurement"""
import bob.measure
import numpy
def calc_pass_rate(threshold, attacks):
"""Calculates the rate of successful spoofing attacks
Parameters
----------
threshold :
the threshold used for classification
scores :
numpy with the scores of the spoofing attacks
Returns
-------
float
rate of successful spoofing attacks
"""
return (attacks >= threshold).mean()
def weighted_neg_error_rate_criteria(data,
weight,
thres,
beta=0.5,
criteria='eer'):
"""Given the single value for the weight parameter balancing between
impostors and spoofing attacks and a threshold, calculates the error rates
and their relationship depending on the criteria (difference in case of
'eer', hter in case of 'min-hter' criteria)
Keyword parameters:
- data - the development data used to determine the threshold. List on 4
numpy.arrays containing: negatives (licit), positives (licit),
negatives (spoof), positivies (spoof)
- weight - the weight parameter balancing between impostors and spoofing
attacks
- thres - the given threshold
- beta - the weight parameter balancing between real accesses and all the
negative samples (impostors and spoofing attacks). Note that this
parameter will be overriden and not considered if the selected criteria
is 'min-hter'.
- criteria - 'eer', 'wer' or 'min-hter' criteria for decision threshold
"""
licit_neg = data[0]
licit_pos = data[1]
spoof_neg = data[2]
spoof_pos = data[3] # unpacking the data
farfrr_licit = bob.measure.farfrr(licit_neg, licit_pos, thres)
farfrr_spoof = bob.measure.farfrr(spoof_neg, spoof_pos, thres)
frr = farfrr_licit[1] # farfrr_spoof[1] should have the same value
far_i = farfrr_licit[0]
far_s = farfrr_spoof[0]
far_w = (1 - weight) * far_i + weight * far_s
if criteria == 'eer':
if beta == 0.5:
return abs(far_w - frr)
else:
# return abs(far_w - frr)
return abs((1 - beta) * frr - beta * far_w)
elif criteria == 'min-hter':
return (far_w + frr) / 2
else:
return (1 - beta) * frr + beta * far_w
def recursive_thr_search(data,
span_min,
span_max,
weight,
beta=0.5,
criteria='eer'):
"""Recursive search for the optimal threshold given a criteria. It
evaluates the full range of thresholds at 100 points, and computes the one
which optimizes the threshold. In the next search iteration, it examines
the region around the point that optimizes the threshold. The procedure
stops when the search range is smaller then 1e-10.
Keyword arguments:
- data - the development data used to determine the threshold. List on 4
numpy.arrays containing: negatives (licit), positives (licit), negatives
(spoof), positivies (spoof)
- span_min - the minimum of the search range
- span_max - the maximum of the search range
- weight - the weight parameter balancing between impostors and spoofing
attacks
- beta - the weight parameter balancing between real accesses and all the
negative samples (impostors and spoofing attacks). Note that methods called
within this function will override this parameter and not considered if the
selected criteria is 'min-hter'.
- criteria - the decision threshold criteria ('eer' for EER, 'wer' for
Minimum WER or 'min-hter' for Minimum HTER criteria).
"""
quit_thr = 1e-10
steps = 100
if abs((span_max - span_min) / span_max) < quit_thr:
return span_max # or span_min, it doesn't matter
else:
step_size = (span_max - span_min) / steps
thresholds = numpy.array(
[(i * step_size) + span_min for i in range(steps + 1)])
weighted_error_rates = numpy.array([
weighted_neg_error_rate_criteria(data, weight, thr, beta, criteria)
for thr in thresholds
])
selected_thres = thresholds[numpy.where(
weighted_error_rates == min(weighted_error_rates)
)] # all the thresholds which have minimum weighted error rate
thr = selected_thres[int(
selected_thres.size / 2
)] # choose the centrally positioned threshold
return recursive_thr_search(data, thr - step_size, thr + step_size,
weight, beta, criteria)
def weighted_negatives_threshold(licit_neg,
licit_pos,
spoof_neg,
spoof_pos,
weight,
beta=0.5,
criteria='eer'):
"""Calculates the threshold for achieving the given criteria between the
FAR_w and the FRR, given the single value for the weight parameter
balancing between impostors and spoofing attacks and a single value for the
parameter beta balancing between the real accesses and the negatives
(impostors and spoofing attacks)
Keyword parameters:
- licit_neg - numpy.array of scores for the negatives (licit scenario)
- licit_pos - numpy.array of scores for the positives (licit scenario)
- spoof_neg - numpy.array of scores for the negatives (spoof scenario)
- spoof_pos - numpy.array of scores for the positives (spoof scenario)
- weight - the weight parameter balancing between impostors and spoofing
attacks
- beta - the weight parameter balancing between real accesses and all the
negative samples (impostors and spoofing attacks). Note that methods called
within this function will override this parameter and not considered if the
selected criteria is 'min-hter'.
- criteria - the decision threshold criteria ('eer' for EER, 'wer' for
Minimum WER or 'min-hter' for Minimum HTER criteria).
"""
span_min = min(
numpy.append(licit_neg, spoof_neg)
) # the min of the span where we will search for the threshold
span_max = max(
numpy.append(licit_pos, spoof_pos)
) # the max of the span where we will search for the threshold
data = (licit_neg, licit_pos, spoof_neg,
spoof_pos) # pack the data into a single list
return recursive_thr_search(data, span_min, span_max, weight, beta,
criteria)
def epsc_weights(licit_neg, licit_pos, spoof_neg, spoof_pos, points=100):
"""Returns the weights for EPSC
Keyword arguments:
- points - number of points to calculate EPSC
"""
step_size = 1 / float(points)
weights = numpy.array([(i * step_size) for i in range(points + 1)])
return weights
def epsc_thresholds(licit_neg,
licit_pos,
spoof_neg,
spoof_pos,
points=100,
criteria='eer',
omega=None,
beta=None):
"""Calculates the optimal thresholds for EPSC, for a range of the weight
parameter balancing between impostors and spoofing attacks, and for a range
of the beta parameter balancing between real accesses and all the negatives
(impostors and spoofing attacks)
Keyword arguments:
- licit_neg - numpy.array of scores for the negatives (licit scenario)
- licit_pos - numpy.array of scores for the positives (licit scenario)
- spoof_neg - numpy.array of scores for the negatives (spoof scenario)
- spoof_pos - numpy.array of scores for the positives (spoof scenario)
- points - number of points to calculate EPSC
- criteria - the decision threshold criteria ('eer', 'wer' or 'min-hter')
- omega - the value of the parameter omega, balancing between impostors and
spoofing attacks. If None, it is going to span the full range [0,1].
Otherwise, can be set to a fixed value or a list of values.
- beta - the value of the parameter beta, balancing between real accesses
and all the negatives (zero-effort impostors and spoofing attacks). If
None, it is going to span the full range [0,1]. Otherwise, can be set to a
fixed value or a list of values.
"""
step_size = 1 / float(points)
if omega is None:
omega = numpy.array([(i * step_size) for i in range(points + 1)])
elif not isinstance(omega, list) and not isinstance(
omega, tuple) and not isinstance(omega, numpy.ndarray):
omega = numpy.array([omega])
else:
omega = numpy.array(omega)
if beta is None:
beta = numpy.array([(i * step_size) for i in range(points + 1)])
elif not isinstance(beta, list) and not isinstance(
beta, tuple) and not isinstance(beta, numpy.ndarray):
beta = numpy.array([beta])
else:
beta = numpy.array(beta)
thresholds = numpy.ndarray([beta.size, omega.size], 'float64')
for bindex, b in enumerate(beta):
thresholds[bindex, :] = numpy.array([
weighted_negatives_threshold(
licit_neg,
licit_pos,
spoof_neg,
spoof_pos,
w,
b,
criteria=criteria) for w in omega
], 'float64')
return omega, beta, thresholds
def weighted_err(error_1, error_2, weight):
"""Calculates the weighted error rate between the two input parameters
Keyword arguments:
- error_1 - the first input error rate (FAR for zero effort impostors
usually)
- error_2 - the second input error rate (SFAR)
- weight - the given weight
"""
return (1 - weight) * error_1 + weight * error_2
def error_rates_at_weight(licit_neg,
licit_pos,
spoof_neg,
spoof_pos,
omega,
threshold,
beta=0.5):
"""Calculates several error rates: FRR, FAR (zero-effort impostors), SFAR,
FAR_w, HTER_w for a given value of w. It returns the calculated threshold
as a last argument
Keyword arguments:
- licit_neg - numpy.array of scores for the negatives (licit scenario)
- licit_pos - numpy.array of scores for the positives (licit scenario)
- spoof_neg - numpy.array of scores for the negatives (spoof scenario)
- spoof_pos - numpy.array of scores for the positives (spoof scenario)
- threshold - the given threshold
- omega - the omega parameter balancing between impostors and spoofing
attacks
- beta - the weight parameter balancing between real accesses and all the
negative samples (impostors and spoofing attacks).
"""
farfrr_licit = bob.measure.farfrr(
licit_neg, licit_pos,
threshold) # calculate test frr @ threshold (licit scenario)
farfrr_spoof = bob.measure.farfrr(
spoof_neg, spoof_pos,
threshold) # calculate test frr @ threshold (spoof scenario)
# we can take this value from farfrr_spoof as well, it doesn't matter
frr = farfrr_licit[1]
far = farfrr_licit[0]
sfar = farfrr_spoof[0]
far_w = weighted_err(far, sfar, omega)
hter_w = (far_w + frr) / 2
wer_wb = weighted_err(frr, far_w, beta)
return (frr, far, sfar, far_w, wer_wb, hter_w, threshold)
def epsc_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos, thresholds,
omega, beta):
"""Calculates several error rates: FAR_w and WER_wb for the given weights
(omega and beta) and thresholds (the thresholds need to be computed first
using the method: epsc_thresholds() before passing to this method)
Parameters
----------
licit_neg : array_like
array of scores for the negatives (licit scenario)
licit_pos : array_like
array of scores for the positives (licit scenario)
spoof_neg : array_like
array of scores for the negatives (spoof scenario)
spoof_pos : array_like
array of scores for the positives (spoof scenario)
thresholds : array_like
ndarray with threshold values
omega : array_like
array of the omega parameter balancing between impostors
and spoofing attacks
beta : array_like
array of the beta parameter balancing between real accesses
and all negatives (impostors and spoofing attacks)
Returns
-------
far_w_errors: array_like
FAR_w
wer_wb_errors: array_like
WER_wb
"""
far_w_errors = numpy.ndarray((beta.size, omega.size), 'float64')
wer_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')
for bindex, b in enumerate(beta):
errors = [
error_rates_at_weight(licit_neg, licit_pos, spoof_neg, spoof_pos,
w, thresholds[bindex, windex], b)
for windex, w in enumerate(omega)
]
far_w_errors[bindex, :] = [errors[i][3] for i in range(len(errors))]
wer_wb_errors[bindex, :] = [errors[i][4] for i in range(len(errors))]
return far_w_errors, wer_wb_errors
def all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos, thresholds,
omega, beta):
"""Calculates several error rates: FAR_w and WER_wb for the given weights
(omega and beta) and thresholds (the thresholds need to be computed first
using the method: epsc_thresholds() before passing to this method)
Parameters
----------
licit_neg : array_like
array of scores for the negatives (licit scenario)
licit_pos : array_like
array of scores for the positives (licit scenario)
spoof_neg : array_like
array of scores for the negatives (spoof scenario)
spoof_pos : array_like
array of scores for the positives (spoof scenario)
thresholds : array_like
ndarray with threshold values
omega : array_like
array of the omega parameter balancing between impostors
and spoofing attacks
beta : array_like
array of the beta parameter balancing between real accesses
and all negatives (impostors and spoofing attacks)
Returns
-------
far_w_errors: array_like
FAR_w
wer_wb_errors: array_like
WER_wb
"""
frr_errors = numpy.ndarray((beta.size, omega.size), 'float64')
far_errors = numpy.ndarray((beta.size, omega.size), 'float64')
sfar_errors = numpy.ndarray((beta.size, omega.size), 'float64')
far_w_errors = numpy.ndarray((beta.size, omega.size), 'float64')
wer_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')
hter_wb_errors = numpy.ndarray((beta.size, omega.size), 'float64')
for bindex, b in enumerate(beta):
errors = [
error_rates_at_weight(licit_neg, licit_pos, spoof_neg, spoof_pos,
w, thresholds[bindex, windex], b)
for windex, w in enumerate(omega)
]
frr_errors[bindex, :] = [errors[i][0] for i in range(len(errors))]
far_errors[bindex, :] = [errors[i][1] for i in range(len(errors))]
sfar_errors[bindex, :] = [errors[i][2] for i in range(len(errors))]
far_w_errors[bindex, :] = [errors[i][3] for i in range(len(errors))]
wer_wb_errors[bindex, :] = [errors[i][4] for i in range(len(errors))]
hter_wb_errors[bindex, :] = [errors[i][5] for i in range(len(errors))]
return (frr_errors, far_errors, sfar_errors, far_w_errors, wer_wb_errors,
hter_wb_errors)
def calc_aue(licit_neg,
licit_pos,
spoof_neg,
spoof_pos,
thresholds,
omega,
beta,
l_bound=0,
h_bound=1,
var_param='omega'):
"""Calculates AUE of EPSC for the given thresholds and weights
Keyword arguments:
- licit_neg - numpy.array of scores for the negatives (licit scenario)
- licit_pos - numpy.array of scores for the positives (licit scenario)
- spoof_neg - numpy.array of scores for the negatives (spoof scenario)
- spoof_pos - numpy.array of scores for the positives (spoof scenario)
- l_bound - lower bound of integration
- h_bound - higher bound of integration
- points - number of points to calculate EPSC
- criteria - the decision threshold criteria ('eer', 'wer' or 'min-hter')
- var_param - name of the parameter which is varied on the abscissa
('omega' or 'beta')
"""
from scipy import integrate
if var_param == 'omega':
errors = all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos,
thresholds, omega, beta)
weights = omega # setting the weights to the varying parameter
else:
errors = all_error_rates(licit_neg, licit_pos, spoof_neg, spoof_pos,
thresholds, omega, beta)
weights = beta # setting the weights to the varying parameter
wer_errors = errors[4].reshape(1, errors[4].size)
l_ind = numpy.where(weights >= l_bound)[0][0]
h_ind = numpy.where(weights <= h_bound)[0][-1]
aue = integrate.cumtrapz(wer_errors, weights)
aue = numpy.append(
[0], aue) # for indexing purposes, aue is cumulative integration
aue = aue[h_ind] - aue[l_ind]
return aue
Loading