Skip to content
Snippets Groups Projects
Commit cff21817 authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[algorithms] added my own version of one-class GMM

parent 9ddf3309
No related branches found
No related tags found
1 merge request!33WIP: added LDA and MLP
Pipeline #
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
import numpy
from bob.pad.base.algorithm import Algorithm
import bob.learn.em
import bob.io.base
class OCGMM(Algorithm):
"""
This class interfaces a GMM-based "classifier" to perform PAD experiments
A GMM is used to model the bonafide features
"""
def __init__(self, n_gaussians=2, max_iter=1000, conv_threshold=1e-5, **kwargs):
Algorithm.__init__(self,
performs_projection=True,
requires_projector_training=True,
**kwargs)
self.n_gaussians = n_gaussians
self.max_iter = max_iter
self.conv_threshold = conv_threshold
self.machine = None
self.trainer = bob.learn.em.ML_GMMTrainer(update_means=True, update_variances=True, update_weights=True)
def train_projector(self, training_features, projector_file):
"""
Trains the GMM using Expectation-Maximimazation with Maximum Likelihood criterion
**Parameters**
training_features:
"""
# training_features[0] - training features for the REAL class.
# training_features[1] - training features for the ATTACK class.
# The data - "positive class only"
pos = numpy.array(training_features[0])
features_dim = pos.shape[1]
# The machine
self.machine = bob.learn.em.GMMMachine(self.n_gaussians, features_dim)
# train
bob.learn.em.train(self.trainer, self.machine, pos, max_iterations=self.max_iter, convergence_threshold=self.conv_threshold)
f = bob.io.base.HDF5File(projector_file, 'w')
self.machine.save(f)
def project(self, feature):
"""
Compute the log-likelihood of the feature
"""
return self.machine(feature)
def score(self, toscore):
return [toscore[0]]
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
import numpy
from bob.pad.base.algorithm import Algorithm
import bob.io.base
from sklearn import mixture
class SKLGMM(Algorithm):
"""
This class interfaces a GMM-based "classifier" to perform PAD experiments
A GMM is used to model the bonafide features
"""
def __init__(self, n_gaussians=2, max_iter=1000, conv_threshold=1e-5, **kwargs):
Algorithm.__init__(self,
performs_projection=True,
requires_projector_training=True,
**kwargs)
self.n_gaussians = n_gaussians
self.max_iter = max_iter
self.conv_threshold = conv_threshold
self.machine = mixture.GaussianMixture(n_components=n_gaussians, tol=conv_threshold, max_iter=max_iter)
self.parameters_keys = [ "covariance_type", "covariances_", "lower_bound_", "means_",
"n_components", "weights_", "converged_", "precisions_", "precisions_cholesky_"]
def train_projector(self, training_features, projector_file):
"""
Trains the GMM using Expectation-Maximimazation with Maximum Likelihood criterion
**Parameters**
training_features:
"""
# training_features[0] - training features for the REAL class.
# training_features[1] - training features for the ATTACK class.
# The data - "positive class only"
pos = numpy.array(training_features[0])
features_dim = pos.shape[1]
# train
self.machine.fit(pos)
# save
f = bob.io.base.HDF5File(projector_file, 'w')
for key in self.parameters_keys:
data = getattr(self.machine, key)
f.set(key, data)
def load_projector(self, projector_file):
f = bob.io.base.HDF5File(projector_file, 'r') # file to read the machine from
self.machine = mixture.GaussianMixture()
for key in self.parameters_keys:
data = f.read(key)
setattr(self.machine, key, data)
def project(self, feature):
"""
Compute the log-likelihood of the feature
"""
# load
return self.machine.score_samples(feature)
def score(self, toscore):
return [toscore[0]]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment