Skip to content
Snippets Groups Projects
Commit 32411da0 authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[algorithm] fixed docstrings in MLP

parent cf4bfbe9
Branches
Tags
1 merge request!50Add new classification algorithms
Pipeline #
......@@ -19,7 +19,7 @@ class MLP(Algorithm):
Attributes
----------
hidden_units : :py:obj:`tuple` of int
hidden_units : :py:obj:`tuple` of :any:`int`
The number of hidden units in each hidden layer
max_iter : int
The maximum number of training iterations
......@@ -54,10 +54,10 @@ class MLP(Algorithm):
def train_projector(self, training_features, projector_file):
"""Trains the MLP
Parameters:
-----------
training_features : :py:obj:`list` of :py:class:`numpy.ndarray` or :py:class:`bob.bio.video.utils.FrameContainer`
Data used to train the MLP. The real data are in training_features[0] and the attacks are in training_features[1]
Parameters
----------
training_features : :py:obj:`list` of :py:class:`numpy.ndarray`
Data used to train the MLP. The real attempts are in training_features[0] and the attacks are in training_features[1]
projector_file : str
Filename where to save the trained model.
......@@ -71,11 +71,6 @@ class MLP(Algorithm):
label_attack = numpy.zeros((len(training_features[1]), 2), dtype='float64')
label_attack[:, 1] = 0
#if isinstance(training_features[0][0], FrameContainer):
# real = convert_frame_cont_to_array(training_features[0])
#if isinstance(training_features[1][0], FrameContainer):
# attack = convert_frame_cont_to_array(training_features[1])
real = numpy.array(training_features[0])
attack = numpy.array(training_features[1])
X = numpy.vstack([real, attack])
......@@ -115,7 +110,8 @@ class MLP(Algorithm):
Parameters
----------
feature : :py:class:`numpy.ndarray` or :py:class:`bob.bio.video.utils.FrameContainer`
feature : :py:class:`numpy.ndarray`
The feature to classify
Returns
-------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment